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We investigate the performance of Bayesian optimisation for finding the ground state energy of
molecules with variational quantum eigensolvers. We implement a variational quantum eigensolver
using a classical simulation of a quantum computer and search for the ground state energy of H2

and LiH molecules. We use the UCC ansatz circuit for H2 and a hardware-efficient ansatz circuit for
LiH. When using a noiseless quantum computer simulation, Bayesian optimisation converges to the
ground state energy of H2 and LiH in an order of magnitude less number of quantum computations
than the simultaneous perturbation stochastic approximation (SPSA) algorithm. When simulating
a quantum computer with a 10% chance of random gate errors, Bayesian optimisation converges
to the ground state ansatz parameter values of H2 with a significantly higher probability of 83%
compared to 18% for SPSA. We suggest Bayesian optimisation is a valuable tool for implementing
variational quantum eigensolvers on noisy near-term quantum computers.

I. INTRODUCTION

Quantum algorithms are able to simulate quantum sys-
tems, such as molecules, exponentially quicker than clas-
sical algorithms [1, 2]. Indeed, it is widely believed that
this improvement will yield unprecedented advances in
quantum chemistry [3, 4].

Whilst efficient algorithms exist, implementing these
algorithms on today’s quantum hardware is challenging.
Current quantum computers suffer heavily from deco-
herence and inaccurate gate execution and these sources
of noise strongly limit the size of the quantum circuits
which can be computed. Two-qubit gate fidelities have
been demonstrated in range of 0.1% to 10% and any algo-
rithm which runs on near-term quantum computers must
be able cope with these limitations [5].

One strategy for overcoming noise in quantum comput-
ers is to design fault-tolerant algorithms, where ancillary
qubits are used to monitor and correct the state of a
quantum computer [6–8]. Whilst these approaches offer
strong theoretical guarantees, they can require a large
amount of additional resource, typically in the form of
thousands or more of ancillary qubits [9–11]. Near-term
quantum computers are likely to have access to tens of
qubits, which puts many fault-tolerant algorithms out of
reach for near-term quantum computers [12].

Variational quantum eigensolvers (VQEs), first demon-
strated in 2014 [13], propose a promising alternative
strategy for implementing quantum simulation on cur-
rent quantum hardware. VQEs are designed to find the
ground state energy of a physical system, such as that of
a molecule. Importantly, they propose a hybrid classical-
quantum approach to overcome noise.
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To find the ground state energy, VQEs use optimi-
sation to minimise the expected energy of the system.
A quantum computer is used to evaluate the expected
energy, which is classically intractable, whilst the high-
level optimisation routine is offloaded to a classical com-
puter. By using the quantum computer inside a sub-
routine, smaller circuits can be used and qubits can be
reinitialised after each step, making VQEs more acces-
sible to near-term quantum computers. Recent work by
Hempel et al. [14] was able to find the ground state en-
ergy of H2 and LiH using a scalable VQE design on an
ion-trap quantum computer.

A key choice in the success of VQEs is the type of
classical optimisation algorithm used. In particular, the
choice of ansatz used to produce trial states significantly
affects the difficulty of the optimisation problem, which
is not guaranteed to converge [14–16].

Another key limitation is that VQEs, whilst reducing
the requirement on the quantum computer, are still sus-
ceptible to noise. Hempel et al. were not able to achieve
chemical precision due to quantum hardware noise. Re-
alising VQEs with larger circuit sizes in the presence of
noise presents a significant challenge [14].

Bayesian optimisation is a global, classical optimi-
sation method which appears attractive for VQEs.
Bayesian optimisation uses the combination of a prob-
abilistic surrogate model and an acquisition function to
minimise an objective function. During each optimisa-
tion step, objective function evaluations are used to up-
date the surrogate model and acquisition function, and
the acquisition function is searched over to find the next
objective parameter values for evaluation [17].

A key feature of Bayesian optimisation is that the sur-
rogate model is a probabilistic model, which allows it to
accommodate stochastic objective values. Bayesian op-
timisation is also a global optimisation method. Both of
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FIG. 1. A VQE uses optimisation to minimise the ex-
pected energy of a physical system. This relies on the Ritz-
Rayleigh variational principle, which implies that the ground
state wavefunction of a system can be found by minimising
the expected energy of the system. During optimisation, a
quantum computer is used to find the expected energy of
a parameterised trial wavefunction. To construct the trial
wavefunction, a parameterised ansatz circuit is used. This
ansatz circuit may or may not be chemistry-inspired. The ex-
pected energy of the system is estimated by making repeated
measurements of the trial state, and handed to a classical op-
timisation routine which updates the parameters of the trial
wavefunction. Dashed line separates quantum computation
(top) from classical computation (bottom).

these considerations are important when implementing
VQEs on noisy near-term quantum computers where the
true ground state energy is desired.

Existing implementations of VQEs have mostly em-
ployed the Nelder-Mead algorithm or approximate gradi-
ent methods for classical optimisation [13, 14, 18]. In
this work we quantitatively assess the performance of
Bayesian optimisation.

We assess the performance of Bayesian optimisation
for finding the ground state energy of H2 and LiH with
VQEs. We also investigate the convergence of Bayesian
optimisation for finding the ground state energy of H2

with increasing levels of gate noise in the quantum com-
puter. We use a classical simulation of a quantum com-
puter to carry out our tests. We compare all our results
to the simultaneous perturbation stochastic approxima-
tion (SPSA) optimisation algorithm, which has been used
in previous VQE demonstrations [18].

II. METHODS

The VQE method is summarised in Figure 1. To as-
sess the performance of Bayesian optimisation, we build a
VQE using a classical simulation of a quantum computer.

We design our simulator using the open-source Pro-
jectQ library [19]. Our simulator accepts an ansatz cir-
cuit, a set of ansatz parameters values and a Hamiltonian
representing a physical system as input. The output of

our simulator is an estimate of the expected energy of
the system.

To map molecular Hamiltonians onto a quantum com-
puter, they are typically re-written in the second quan-
tised form and transformed using a suitable qubit map-
ping, such as the Jordan-Wigner transformation or
Bravyi-Kitaev transformation [14, 20]. Both transfor-
mations produce qubit Hamiltonians which are a linear
combinations of tensor products of Pauli operators and
our simulator accepts any Hamiltonian which can be ex-
pressed in this form.

To estimate the expected energy, we initialise our sim-
ulator in the |0〉⊗n

state, where n is the number of qubits
in the ansatz circuit. We prepare a trial wavefunction by
executing the ansatz circuit, using the input ansatz pa-
rameter values. Given that the Hamiltonian is a linear
combination of Pauli terms, we estimate the expected
energy by averaging repeated measurements of the trial
state in the Pauli basis for each term in the Hamilto-
nian and summing the results. This estimation method
produces shot noise on the expected energy for a finite
number of measurements [21]. When using our simulator
it is also possible to classically obtain the exact expected
value of the Hamiltonian as we have access to the simu-
lator’s hidden state amplitudes.

To make the simulation more realistic, we simulate
gate noise during the execution of the ansatz circuit. For
each gate we allow the chance that a different gate is
randomly executed, and we define the gate noise as the
probability a different gate is executed to the gate speci-
fied. For single qubit gates, if a different gate is executed
it is chosen randomly from the set {X1, Y1, Z1}. For two
qubit gates, it is chosen randomly from the set {X1, X2,
Y1, Y2, Z1, Z2, X1X2, X1Y2, Y1X2, X1Z2, Z1X2, Y1Y2,
Y1Z2, Z1Y2, Z1Z2}.

To carry out Bayesian optimisation, we use the GPy-
Opt library [22]. For all our tests we use a Gaussian
process for our surrogate model with a Matern- 52 kernel.
We update our surrogate model and propose a new set of
ansatz parameter values after each expected energy es-
timate. We optimise for a fixed number of steps before
testing for convergence.

We compare all our results to the SPSA optimisa-
tion algorithm, an approximate gradient descent method
which can accommodate noise in the objective function
[23]. We fix the SPSA look size, step size, alpha and
gamma values to be 0.05 radians, 0.05 radians, 0.3 and
0.2 respectively.

For our first test, we search for the ground state en-
ergy of H2 and LiH without the presence of noise. To
simulate H2, we use the 4 qubit Jordan-Wigner trans-
formed Hamiltonian described by Hempel et al., at an
inter-nuclear distance of R = 0.75Å. The corresponding
ground state energy at this distance is -1.1371 Hartree.
We use the chemistry-motivated Unitary Coupled Clus-
ter (UCC) ansatz [24], shown in Fig 5, which has 3 free
parameters.

To simulate LiH, we use the 6 qubit Bravyi-Kitaev
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FIG. 2. Convergence of Bayesian optimisation for finding the ground state energy of H2 and LiH without the presence of noise.
Left: convergence for H2. Right: convergence for LiH. Top row shows a comparison to the SPSA optimisation algorithm. Inner
left shows the current lowest expected energy value against iteration number for 100 different randomly-initialised optimisation
runs. Inner right shows the histogram of final expected energy values over all 100 runs. The energy eigenspectrum of each
Hamiltonian is shown in each plot. Black lines show excited states, thick blue line shows the true ground state energy. We
show results for the EI acquisition function for H2 and the MPI acquisition function for LiH.

transformed Hamiltonian described by McArdle et al.
[25] at an inter-nuclear distance of R = 1.45Å. The cor-
responding ground state energy at this distance is -7.8807
Hartree. We also use their hardware-efficient ansatz,
shown Fig 5, which has 42 free parameters. With a larger
number of parameters, this presents a more challenging
optimisation problem. For both tests we do not include
gate noise and use the exact expected energy values with-
out shot noise from our simulator. We test the con-
vergence of the expected improvement (EI), maximum
probability of improvement (MPI) and lower confidence
bound (LCB) acquisition functions for Bayesian optimi-
sation [22].

For our second test, we search for the ground state
energy of H2 in the presence of shot noise and varying
levels of gate noise, using the estimated expected energy
values from our simulator. We use the same ansatz and
Hamiltonian as our first test. We keep the shot noise
fixed, averaging 100 measurements of each term in the
Hamiltonian to estimate the expected energy. We test
the convergence of both SPSA and Bayesian optimisation
for different levels of gate noise ranging from 0% to 10%,
in increments of 1%. In this test we use the EI acquisition
function for Bayesian optimisation.

Our second test requires considerably more computa-
tional power, as we average over 100 preparations and
measurements of the trial state to estimate the expected

energy of each Hamiltonian term. We run expected en-
ergy measurements in parallel using 15 CPU cores, re-
sulting in each expected energy estimate taking approx-
imately 4 seconds to compute.

Finally, for all tests we re-run each optimisation
method 100 times with a different random initialisation
each time to gather statistics on the likelihood of conver-
gence.

III. RESULTS

Figure 2 shows the convergence of Bayesian optimi-
sation without the presence of noise. For H2, we find
all 100 Bayesian optimisation runs using the EI acqui-
sition function converge to within 0.06 Hartree of the
ground state energy, after approximately 20 evaluations
of the expected energy. We observe similar convergence
behaviour across all three types of acquisition function
tested. For SPSA, we find 95 of the runs converge to
within 0.06 Hartree of the ground state energy after ap-
proximately 200 evaluations (we note 2 evaluations of the
expected energy are required per iteration to compute the
SPSA gradient). The remaining 5 SPSA runs converge
to the first excited state eigenvalue.

For LiH, we find 78 of the 100 Bayesian optimisa-
tion runs using the MPI acquisition function converge
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FIG. 3. Convergence of Bayesian optimisation for finding the ground state energy of H2 in the presence of shot noise and 10%
gate noise. Top row shows a comparison to the SPSA optimisation algorithm. Left shows the current lowest estimated expected
energy value against iteration number for 100 different randomly-initialised optimisation runs. Middle shows the underlying
exact expected energy value corresponding to the current best ansatz parameter values against iteration number for each of
the 100 runs, without noise, calculated classically using the hidden state of the simulator. Right shows the histogram of final
values of these underlying exact expected energy values over all 100 runs. The energy eigenspectrum is shown in each plot.
Black lines show excited states, thick blue line shows the true ground state energy. The EI acquisition function is used for
Bayesian optimisation.

to within 0.06 Hartree of the ground state energy, af-
ter approximately 500 evaluations. When using the LCB
and EI acquisition functions, we find 76 and 43 of the
runs converge respectively, in a similar number of evalu-
ations. For SPSA, we find 55 of runs converge to within
0.06 Hartree of the ground state energy, after 20,000 ex-
pected energy evaluations.

Figure 3 shows the convergence of Bayesian optimisa-
tion in the presence of shot noise and 10% gate noise. We
plot the convergence of both the estimated expected en-
ergy seen by the VQE and the underlying exact expected
energy corresponding to the current best ansatz param-
eter values, calculated using the hidden state amplitudes
in our simulator. We find 83 of the Bayesian optimi-
sation runs converge to ansatz parameter values which
correspond to an underlying exact expected energy value
within 0.06 Hartree of the ground state energy, after ap-
proximately 150 evaluations. For SPSA, 18 of the runs
converge under the same convergence condition after 800
evaluations.

Figure 4 shows the probability these runs will converge
for varying levels of gate noise. We use the same conver-
gence condition described above to calculate this prob-

ability. We find Bayesian optimisation converges more
than 80% of the time for all levels of gate noise up to 10%,
whilst the probability of convergence for the SPSA algo-
rithm degrades strongly below 80% after approximately
4% gate noise.

IV. CONCLUSIONS AND LIMITATIONS

We have assessed the performance of Bayesian optimi-
sation for finding the ground state energy of H2 and LiH
molecules with variational quantum eigensolvers. We
used a classical simulation of a quantum computer to
implement our variational quantum eigensolver.

Our work suggests that Bayesian optimisation could
be a valuable tool for implementing VQEs on noisy near-
term quantum computers. Without the presence of noise,
we found Bayesian optimisation converged to the ground
state energy of H2 and LiH in an order of magnitude
less number of quantum computations than the SPSA
algorithm. In the presence of shot noise and gate noise,
Bayesian optimisation converged to the ground state en-
ergy of H2 more reliably than the SPSA algorithm.
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FIG. 4. Probability a run will converge to ansatz parameter
values which correspond to an underlying exact expected en-
ergy value within 0.06 Hartree of the ground state energy of
H2, for varying levels of gate noise. Blue shows the probabil-
ity for Bayesian optimisation, orange shows the probability
for the SPSA algorithm.

Bayesian optimisation was able to find ansatz param-
eter values which corresponded to exact expected energy
values close to the true ground state of H2, even though
the noisy estimated expected energy values seen during
optimisation were significantly above the ground state
energy (Figure 3, left). We suspect the higher values
were due to noise in the VQE pushing the average of
each Pauli measurement in the Hamiltonian closer to 0
when estimating the expected energy.

Much further work could be carried out to extend these

results. The performance of Bayesian optimisation could
be assessed for a wider variety of ansatze and Hamilto-
nians, including those of more complex molecules. Other
acquisition functions could be tested, particularly ones
which explicitly handle noise in the objective function
[17, 26]. We note that the EI acquisition function per-
formed poorly compared to the MPI and LCB acquisi-
tion functions when searching for the ground state of LiH
using the hardware-efficient ansatz. Bayesian optimisa-
tion could also be tested with varying levels of shot noise,
which we were not able to carry out due to computational
constraints.

Whilst showing good convergence to the local vicinity
of the ground state parameter values, Bayesian optimi-
sation did not often achieve high precision on the ground
state energy value. Using a hybrid approach by switch-
ing to gradient descent close to the solution may improve
this [27, 28]. The performance of Bayesian optimisation
could also be compared to other optimisation methods,
such as the Nelder-Mead algorithm, and other variational
techniques, such as the imaginary time method [25].

Finally, our preliminary results could be confirmed ex-
perimentally on current quantum hardware.
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