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Scalability challenges of PINNs

Advantages of PINNs

 Mesh-free

« Can solve forward and inverse
problems, and seamlessly incorporate
observational data

* Mostly unsupervised

« Can perform well for high-dimensional
PDEs

Limitations of PINNs

« Computational cost often high
(especially for forward-only
problems)

« Can be hard to optimise

« Challenging to scale to high-
frequency, multi-scale problems

(although many PINN improvements
exist!)

Training step: 150

Training data
Physics loss training locations

\ —— Exact solution
/\ ponn === Neural network prediction
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Scaling PINNs to higher frequencies
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Problem: PINNs struggle to solve
- high-frequency / multiscale
—— PINN (w =1, 2 layers, 16 hidden units)
—— PINN (w = 15, 2 layers, 16 hidden units) problems
—— PINN (w =15, 4 layers, 64 hidden units)
—— PINN (w =15, 5 layers, 128 hidden units)
20000 Moseley et al, Finite Basis Physics-Informed Neural Networks (FBPINNs):

a scalable domain decomposition approach for solving differential
equations, ACM (2023)

Workshop on Scalable Physics-Informed Neural Networks | Session 3 — Challenges with PINNs and Improving Their Performance 3



Spectral bias issue
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NNs prioritise learning lower frequency functions first

Under certain assumptions can be proved via neural tangent

kernel theory

Rahaman, N., et al, On the spectral bias of neural networks. 36th International

Conference on Machine Learning, ICML (2019)
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Scaling PINNSs to high frequency / multiscale problems

Training step 0

1.0 1 —— Exact solution
s PINN
0.5 ) -
As higher frequencies are added:
0.0
* More collocation points required
e - Larger neural network required
a0l | | | | | « Spectral bias slows convergence
0.0 0.2 0.4 0.6 0.8 1.0
t

Network size: 2 hidden layers, 64 hidden units
% Damped harmonic
oscillator
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Scaling PINNSs to high frequency / multiscale problems

Training step 0

1.0

- Exact solution
s PINN

0.5 4

0.0 A

dO dZ d4 d6 d8 fO
t
Network size: 2 hidden layers, 64 hidden units

% Damped harmonic
oscillator

As higher frequencies are added:

 More collocation points required (o< w?®)
« Larger neural network required (« f(w))
« Spectral bias slows convergence (x s(w))

= Empirically, cost of training often

~ 0(wf (w)s(w))

c.f. FD simulation, where cost of simulation
can scale like ~0(w%)
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PINNs + domain decomposition
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Jagtap, A., et al., Extended physics-informed neural networks
(XPINNS): A generalized space-time domain decomposition based

deep learning framework for nonlinear partial differential equations.

Communications in Computational Physics (2020)

|dea:

Take a “divide-and-conquer” strategy to model more
complex problems:

1. Divide modelling domain into many smaller
subdomains

2. Use a separate neural network in each subdomain to
model the solution

Hypothesis:

The resulting (coupled) local optimization problems are
easier to solve than a single global problem
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Finite basis PINNs (FBPINNSs)

/ Subdomain network: [ Window ]\

f ™ e ~N function
1 — | Subdomain Output

normalisation NN; — | unnormalisation | X w;
Xr9 —>

norm; unnorm ﬂ
\_ J \_ J
o %

J
U(x,0) = 2 w;(x) - unnorm o NN; o norm;(x)
J

V

|

Summation over all
subdomain networks

X1

B 1 model [ 4 overlapping models
w2 overlapping models

f ( | |dea: use overlapping subdomains and a
Moseley et al, Finite Basis Physics-Informed Neural Networks (FBPINNSs): a scalable . .
domain decomposition approach for solving differential equations, ACM (2023) gIOba"y defmed solution ansatz
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FBPINNs in 1D

) FBPINN (individual network solutions)
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Moseley et al, Finite Basis Physics-Informed Neural Networks (FBPINNSs): a scalable
domain decomposition approach for solving differential equations, ACM (2023)
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(b) FBPINN (full solution)

1.0 A

—— Exact solution
—— FBPINN
0.5 1

0.0

—0.5 A

—1.0 A

i(x,0) = 2 w;(x) - unnorm o NN; o norm;(x)

" Window
function

Subdomain
network

Individual subdomain
normalisation

|dea: use overlapping subdomains and a
globally defined solution ansatz
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FBPINNs in 1D

) FBPINN (individual network solutions)

1.0
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) FBPINN subdomain definition and window functions
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Moseley et al, Finite Basis Physics-Informed Neural Networks (FBPINNSs): a scalable
domain decomposition approach for solving differential equations, ACM (2023)
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(b) FBPINN (full solution)

1.0 A

—— Exact solution
—— FBPINN
0.5 1

0.0

—0.5 A

—1.0 A

i(x,0) = 2 w;(x) - unnorm o NN; o norm;(x)

) Window Subdomain
function network
Individual subdomain
normalisation
Notes:
« FBPINNs can be trained with same loss function as
PINNs

« And can simply be thought of as a “custom
architecture”
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FBPINNs vs PINNSs

Training step 0

Training step 0
1.0 1 — Exact solution 1.0 1 - Exact solution
s PINN ws FBPINN
0.5 4 0.5 1
u
0.0 + 0.0 A
—0.5 1 —-0.5 1
-1.0 T T T T T T —1.0 - T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
t t

FBPINN solution

Number of subdomains: 15
Subdomain networks: 1 hidden layer, 32 hidden units

% Damped harmonic f
oscillator 102 ;

] k s FBPINN

s PINN

0 1 2 3 4

FLOPs spent training lell
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Problem: PINNs struggle to solve high-
frequency / multiscale problems
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L1 test error




FBPINNs vs PINNSs

Training step 0

1.0 1 - Exact solution

mess PINN

t

As higher frequencies are added:

« More collocation points required (x w%)
» Larger neural network required (« f(w))
» Spectral bias slows convergence (« s(w))

— Empirically, cost of training often

~ 0(w?f(w)s(w))

1.0 A

Training step 0

- Exact solution
wesss FBPINN
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FBPINNs vs PINNSs

Training step 0

1.0 7 - Exact solution
wemss PINN
0.5 4
0.0 +
—0.5 1
_1.0 T T T T T !
0.0 0.2 0.4 0.6 0.8 1.0
t

Training step 0

1.0 1 — Exact solution
ws FBPINN
0.5 1
0.0 A
—-0.5 1
—1.0 - T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

t

As higher frequencies are added:

« More collocation points required (x w%)
» Larger neural network required (« f(w))
» Spectral bias slows convergence (x s(w))

— Empirically, cost of training often

~ 0(w?f(w)s(w))

As higher frequencies are added:

« More collocation points required (x w%)

« Same size network can be used in each
subdomain

« Domain decomposition alleviates spectral bias

= Empirically, cost of training can be closer to
~0(w%)
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Multi-scale simulation with FBPINNS

FBPINN solution FD simulation

Number of subdomains: 60 x 60 x 60 = 216,000
Total number of trainable parameters: 9 M
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Multi-scale simulation with FBPINNS

FBPINN solution FD simulation

Training time: ~2 hrs on GPU ~ Number of subdomains: 60 x 60 x 60 = 216,000  FD simulation time: ~5 mins
(with optimised code) Total number of trainable parameters: 9 M on CPU!
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Why are FBPINNSs still slow?

Training step 0

101 —— Exact solution As higher frequencies are added:

wess FBPINN

0.5 4

* More collocation points required (o< w?®)
« Same size network can be used in each
subdomain
« Domain decomposition alleviates spectral
iy | | | | | bias
o0 o2 o4 o o8 +o — Empirically, cost of training can be closer
to ~ 0(w?)

0.0 A

BUT gradient descent is a slow optimiser
(non-convex loss requires lots of iterations +
backprop introduces lots of overhead)

..can we avoid gradient descent altogether?
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ldea — Extreme learning machines

(x,0,a) = u(x)

Neural network Extreme learning machine

All weights trainable Hidden weights are randomly initialised and fixed
Only last layer trainable

K

NN(x,6) 2= a6/

k

u

Huang, G. Bin, Zhu, Q. Y., & Siew, C. K. Extreme learning
machine: Theory and applications. Neurocomputing. (2006).
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FBPINN

(a) FBPINN (individual network solutions)

J
2(x,0) = ) w(x) NNj(x,0)) FBPINN

7 Window Subdomain
function network

(ignoring normalization functions for simplicity)
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Extreme learning machine (ELM) FBPINNs

(a) FBPINN (individual network solutions)

)i K
20c,@) = ) wi() ) aub(x,6;) ELM-FBPINN
J

“ ELM in each
subdomain

J = total number of subdomains
K = number of basis functions per subdomain

Dwivedi, V., and Srinivasan, B. Physics Informed Extreme Learning Machine (PIELM)-A rapid method for
the numerical solution of partial differential equations. Neurocomputing. (2020).

Dong, S., and Li, Z. Local extreme learning machines and domain decomposition for solving linear and
nonlinear partial differential equations. Computer Methods in Applied Mechanics and Engineering. (2021).
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Extreme learning machine (ELM) FBPINNs

% a(x, a) = ij(x)z ap(x,0;) ELM-FBPINN
“ ELM in each
subdomain

J = total number of subdomains

B § d? d K = number of basis functions per subdomain
B Z Mmoo Thg K a(t;, 9) N = number of collocation points

[

(ignoring boundary loss for simplicity)
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Extreme learning machine (ELM) FBPINNs

% “ ELM in each
subdomain

=~
Il

N.M > N.M >

/\/\

d2

dt2+udt+k

d2+ d
Maee " Har

+ k

a(x, a) = ij(x)z ap(x,0;) ELM-FBPINN

J = total number of subdomains
K = number of basis functions per subdomain

u(t;, 9)> N = number of collocation points

2
_ K
Z w;(t;) Z aj,p(x, 9jk)>
7 K

ELM-FBPINN
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Extreme learning machine (ELM) FBPINNs

% a(x, a) = ij(x)z ap(x,0;) ELM-FBPINN
“ ELM in each
subdomain

. J = total number of subdomains
<' d* d | At 9)) K = number of basis functions per subdomain
u\i;,

=~
Il

N = number of collocation points

_ _ 2
g2 ; i
<mﬁ+ua+k2w](t)z aj,p(x,0; )
N 2 d
S‘S‘a]k]\fw](t )qb(tl,ejk) N—[ o 2+‘udt+k]
j k

Assuming JV is a linear operator

Il
~.\42 ~.Mz -M2
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Extreme learning machine (ELM) FBPINNs

% a(x, a) = ij(x)z ap(x,0;) ELM-FBPINN
“ ELM in each
subdomain

J = total number of subdomains
[ d? d J K = number of basis functions per subdomain
u(t;, 9) N = number of collocation points

- - 2
[ d? d )
<mﬁ+ua+k2W](t)Z ajrP(x, 0; >
J K Nw;(to)(to, 000) . Nw;(to)d(to, 0)x) Qoo 0
7 7 aj Nw;(t; Do (t:, 61 : ; ( : ) _ ()
j k ark

Nw;(ty)p(ty, 0o0) .. NWj(tN)¢(tNr0]K) 0

=~
Il

2

Il
~.\42 ~.Mz -M2

= ||[Ma — h||?
M:NXJK a:JK h:N
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Linear optimisation

This is a linear least squares problem!
L(a) = ||Ma — h||?
The global minima is given by solving
Aa " =b (normal equation)
where

A=M"M JK xJK
b=M"h JK
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Linear optimisation

This is a linear least squares problem!
L(a) = ||Ma — h||?
The global minima is given by solving

Aa " =b (normal equation)
where

A=M"M JK xJK
b=M"h JK

« By using a linear combination of fixed basis
functions, we have turned the loss function from
non-convex to convex (quadratic)

* |.e., we can now use linear solvers to train ELM-
FBPINNS, instead of gradient descent!

Workshop on Scalable Physics-Informed Neural Networks | Session 3 — Challenges with PINNs and Improving Their Performance
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Example — 1D harmonic oscillator

1.0 - Exact solution 10° -
= = ELM-FBPINN ]
0.5 A . ]
o 10_1'5
u %07 | 'l\\\ ,’l\\\llﬁ\\ll\‘i E
~0.5 - § 1072 5
— ® PINN
~1.01 103 4 @ FBPINN
] | ® | | | o IELM—PII\IIN
0.0 0.2 0.4 0.6 0.8 1.0 0 5 10 15 20 25
t Time (s)
FBPINN / ELM-FBPINN: PINN / FBPINN: Adam optimiser, 0.001
20 subdomains learning rate
1 hidden layer, 8 hidden units (=basis functions) ELM-FBPINN: Conjugate gradient
Tanh activation linear solver
PINN:

2 hidden layers, 64 hidden units
: : Anderson, S., Dolean, V., Moseley, B., & Pestana, J. ELM-FBPINN: efficient
Tanh activation finite-basis physics-informed neural networks. ArXiv. (2024).
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Example — 2D multi-scale Laplace

n=1 n=2 n=3 n==4 n=>5 n==~6
Exact solution Exact solution Exact solution Exact solution Exact solution Exact solution
Multi-scale problem: '

Vzu(xl; xz)

7 n

.2 . .

- _ - i . i - { FBPINN FBPINN ®  FBPINN ® FBPINN ® FBPINN ® FBPINN
- § (2 T[) Sln(z T[xl) Sln(z T[xZ) [1, 21 [1, 2, 4] [1, 2, 4, 8] (1,2, 4, 8, 16] (1,2, 4,8, 16, 32] [1, 2, 4, 8, 16, 32, 64]

n : (10, 10) (20, 20) (40, 40) (80, 80) (160, 160) (320, 320)

Multilevel domain decomposition:

le Q 3|
n a
[Rat I
level 1| ot : ELM-FBPINN ELM-FBPINN © ELM-FBPINN @ ELM-FBPINN @ ELM-FBPINN @ ELM-FBPINN
ittt [1, 2] [1, 2, 4] [1, 2,4, 8] [1, 2, 4,8, 16] [1,2,4,8,16, 32] [1, 2, 4, 8, 16, 32, 64]
evel 3 & @ -' 0@ ! (10, 10) (20,0) (40, 40) (80, 80) (160, 160) (320, 320)

] 1 2 1
3 3
o o ol ofY
oo e e e e e i s 1
level 4 E Qg‘l)‘ le)-' Qg4)-' 9514)-' Q§4)_' Q((s4)-' Qg‘l)lﬂz(;l) :
--------- - - - - - - - - - - - - ]

Dolean, V., et al, Multilevel domain decomposition-based
architectures for physics-informed neural networks, CMAME (2024)

1x1 + 2x2 + 4x4 = 21 subdomains 5,461 subdomains
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Normalised L1 test loss

Example — 2D multi-scale Laplace

n=1 n=2 n=3 n=4 n=>5 n==~6
Exact solution Exact solution Exact solution Exact solution Exact solution Exact solution
10° 3 ® FBPINN
] @ ELM-FBPINN
101 E FBPINN FBPINN FBPINN ® FBPINN FBPINN FBPINN
] [1, 2] [1, 2, 4] [1, 2, 4, 8] [1, 2, 4, 8, 16] [1,2 4,8, 16, 32] [1, 2,4,8,16, 32, 64]
(10, 10) (20, 20) (40, 40) (80, 80) (160, 160) (320, 320)
102 E ?_ * * T
-3
10 ] ELM-FBPINN ELM-FBPINN ’ ELM-FBPINN . ELM-FBPINN ’ ELM-FBPINN ’ ELM-FBPINN
] [1, 2] [1, 2, 4] [1, 2, 4, 8] [1, 2, 4,8, 16] [1,2,4,8,16,32] [1, 2, 4,8, 16, 32, 64]
1 (10, 10) (20,20) (40, 40) (80, 80) (160, 160) (320, 320)
100 10! 102
Total time elapsed (s)

1x1 + 2x2 + 4x4 = 21 subdomains 5,461 subdomains
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Challenges with ELM-FBPINNs

Challenge 1: Linear dependence between basis functions = poorly conditioned matrix Aa” =b

1.0 A

0.5 1

—0.5 A

—1.0 -

<
o
o

0.0 0.2 0.4 0.6 0.8
t

Conjugate gradient solver requires ~5000
iterations

1.0

1071 o ELM-FBPINN (tanh basis), K(A) =9e18 """
. el
10! 1 o
’)\(A)’ 10—2 i 4’

|
1075 - A/
1078 A 4/

1071 4 5
(I) 2|5 5|0 7|5 l(l)O 12|5 léO 1%5
Index (sorted)
Nw;(te)d(to, Og0) - NWj(tO)d)(tO' OJK)
Nw;(ty)p(ty, o) .. Nw; (tn) P (tw, BJK)
A=M"M
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Challenges with ELM-FBPINNs

Challenge 1: Linear dependence between basis functions = poorly conditioned matrix Aa” =b

1.0 A — 1071 ® ELM-FBPINN (tanh basis), x(A) =9e18 ’i
104 -
2] /
10"
-~
¢ o ()] 10 ‘/
~0.5 - 10-5 4 A/
—1.0 ~ 10—8 i 47/
—
— 10-11 4 ’
®
0.0 0.2 0.4 0.6 0.8 1.0 0 25 50 75 100 125 150 175
t Index (sorted)
Possibl lution: use preconditionin
ossible solutio P 9, Nw;(ty)p(tg, Ogo) - NWj(to)d)(to; 9]1{)
See. van Beek, J. W., Dolean, V., & Moseley, B. (2025). Local feature filtering for M = b
scalable and well-conditioned Random Feature Methods. ArXiv.
Nw;(ty)p(ty, o) .. Nw; (tN)¢(tN; 9]1{)
Shang, Y., Heinlein, A., Mishra, S., & Wang, F. (2025). Overlapping A . MTM

Schwarz preconditioners for randomized neural networks with domain
decomposition. Computer Methods in Applied Mechanics and Engineering.
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Challenges with ELM-FBPINNs

Challenge 1: Linear dependence between basis functions = poorly conditioned matrix Aa” =b

1.0 A 107 = ’_—.
f y
0.5 4 104 /' /'
10 - —4

‘ ~
6 o AA)] 102 ‘/
—0.5 1 1075 A “/
—1.0 A 108 - 4/

”'. ELM-FBPINN (tanh basis), x(A) = 9¢18
— 10711 4 5 ® ELM-FBPINN (polynominal basis), x(A) = 4e06
0.0 0.2 0.4 0.6 0.8 1.0 0 25 50 75 100 125 150 175
t Index (sorted)
Possible solution: use a polynomial NIRRT - cinraenn
basis (= Taylor approximation) ol -"': L ,,\‘ AAAAANA,
Conjugate gradient solver requires ~50 el HUYVYYYT TS
iterations ol
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Challenges with ELM-FBPINNs

@ £LM-FBPINN
[1, 2, 4, 8,16, 32, 64]
(320, 320)

Challenge 2: Big matrix! Aa" =b
A:JK X JK b:JK

-
-'3"-'

J = 5,461,

K=6

A:32,766%32,766 = 1 billion elements!

100 E
1071 E

1072 E ?_

1073 E

Normalised L1 test loss

RN

® FBPINN
@ ELM-FBPINN

* ¢

100

10!
Total time elapsed (s)

102
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Challenges with ELM-FBPINNs

@ ELM-FBPINN
[1, 2, 4, 8,16, 32, 64]
(320, 320)

Challenge 2: Big matrix! Aa" =b
A:JK X JK b:JK

J =5,461, K=6
A:32,766%32,766 = 1 billion elements!

Solution: exploit sparsity

A

0 200 400 600 800 1000 1200

Use sparse solver which only uses matvec products

200 0 0
scipy.sparse. linalg.
400 - g
x cg(A, b, x0=None, *, rtol=le-05, atol=0.0, maxiter=None, M=None,
()]
T 600 - callback=None)
c
; Use Conjugate Gradient iteration to solve Ax = b .
]
o 800 Parameters:
A : {sparse array, ndarray, LinearOperator}
1000 The real or complex N-by-N matrix of the linear system. A must represent a
hermitian, positive definite matrix. Alternatively, A can be a linear operator which can
produce Ax using, e.g., | scipy.sparse.linalg.LinearOperator .
1200 4

Column Index
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Time scheduling

1.0 - \ Step 1 Exact solution
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Another solution: use time scheduling

J=20, K=8
A:160%x160

But with only 3 active models / step
A:24%24
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finite difference / finite element methods?
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7. Discussion and conclusions .
Conclusion

After having investigated each of the PDEs on its own, let us now discuss and draw

conclusions from the results as a whole. Considering the solution time and accuracy, We introduce the ODIL framework for solving inverse problems for PDEs by casting

PINNS are not able to beat FEM in our study. In all the examples that we have studied, their discretization as an optimization problem and applying optimization techniques

- . that are widely available in machine-learning software. The concept of casting the PDE
the FEM solutions were faster at the same or at a higher accuracy. ) .
as is closely related to the neural network formulations proposed by (15-17) and

recently revived as PINNs. However, the fact that we use the discrete approximation of

the equations allows for ODIL to be orders of magnitude more efficient in terms of

computational cost and accuracy compared to the PINN for which complex flow

problems “remain elusive” (71).
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Are PINNs becoming FEM?

ELM-FBPINN Finite element method

d2u+ du+k B
e TR u=f

] K
2t @) = ) wi(®) ) auh(t, 00
j K

N 2

d d ’
L(a) = z (lmw tuot k] t(t;, a) — f(ti))

l

= |[Ma — h||?
> Aa—b =0

A:JK XJK  b:JK
(sparse & symmetric)

Workshop on Scalable Physics-Informed Neural Networks | Session 3 — Challenges with PINNs and Improving Their Performance

36



Are PINNs becoming FEM?

ELM-FBPINN Finite element method
d*u N du+k dzu_l_ du_l_k B
Moz thg the=/s moae thg the=/s
J K J
a(t,a) = Z w; (£) 2 (L, 8;0) a(t,a) = Z @ (6)
J k J
S 42 d ?
L(a)=2([ m s +k]u(tua) f(t)) f ¢(t>[ i T har +k]u<t a>dt—j bi(0) fdt vi=0,...]
l
— IMa— h|? =>( mL + uD + kM)a = b
=>Aa—b=20
A:JK X JK  b:JK L,D,M:] x]  b:]
(sparse & symmetric) (sparse & symmetric)
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Workshop overview

Session 1: Intro to PINNs

» Lecture (1 hr): Introduction to SciML and PINNs
* Code-along (30 min): Training a PINN in PyTorch

Session 2: Accelerating PINNs with JAX

» Lecture (30 min): Introduction to JAX
» Practical (1 hr): Introduction to JAX and coding a PINN from scratch in JAX

Session 3: Accelerating PINNs with domain decomposition and NLA

» Lecture (30 min): Challenges with PINNs and improving their performance with
domain decomposition and numerical linear algebra

» Practical (1 hr): Coding finite basis PINNs and extreme learning machine
FBPINNs in JAX
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Amplitude

Amplitude

Amplitude

Training step 1 Relative L1 test error: 78.76%
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Training step 1  Relative L1 test error: 0.86%
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PINN (PyTorch) baseline

82 seconds

PINN (JAX)

11 seconds

PINN (JAX) + Domain
Decomposition + Numerical
Linear Algebra

0.002 seconds
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