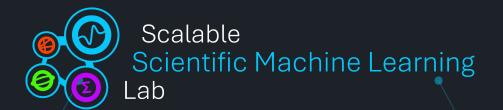
Workshop on Scalable Physics-Informed Neural Networks

Session 3 – Challenges with PINNs and improving their performance with domain decomposition and numerical linear algebra

Dr. Ben Moseley



IMPERIAL

Scalability challenges of PINNs

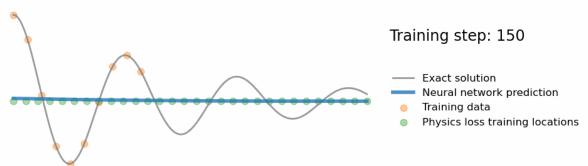
Advantages of PINNs

- Mesh-free
- Can solve forward and inverse problems, and seamlessly incorporate observational data
- Mostly unsupervised
- Can perform well for high-dimensional PDEs

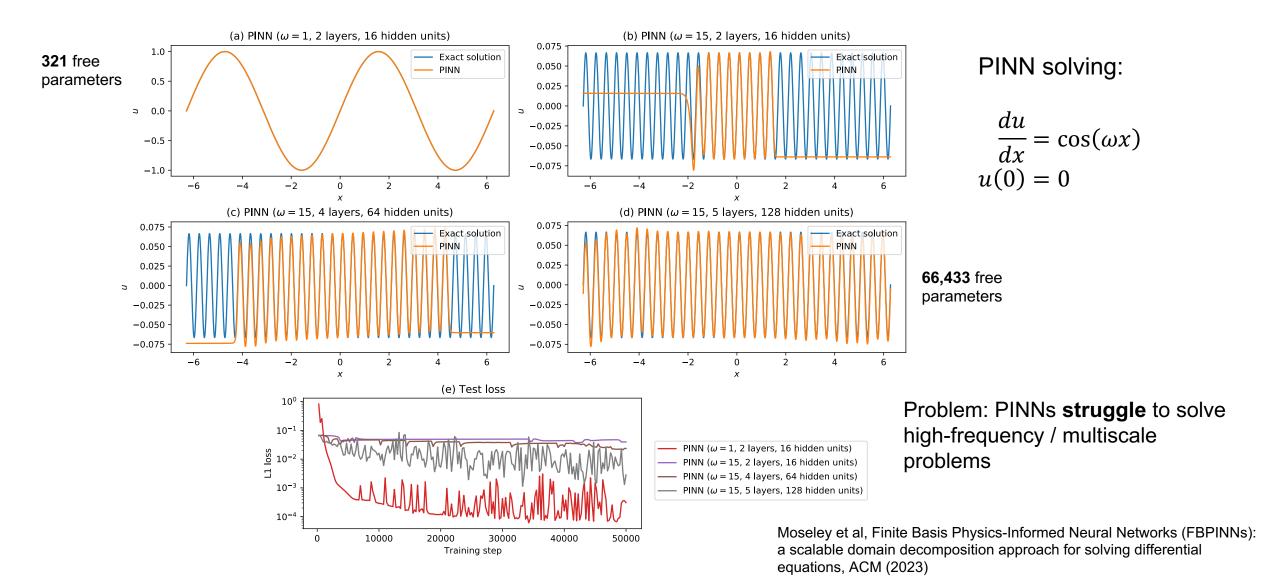
Limitations of PINNs

- Computational cost often high (especially for forward-only problems)
- Can be hard to optimise
- Challenging to scale to highfrequency, multi-scale problems

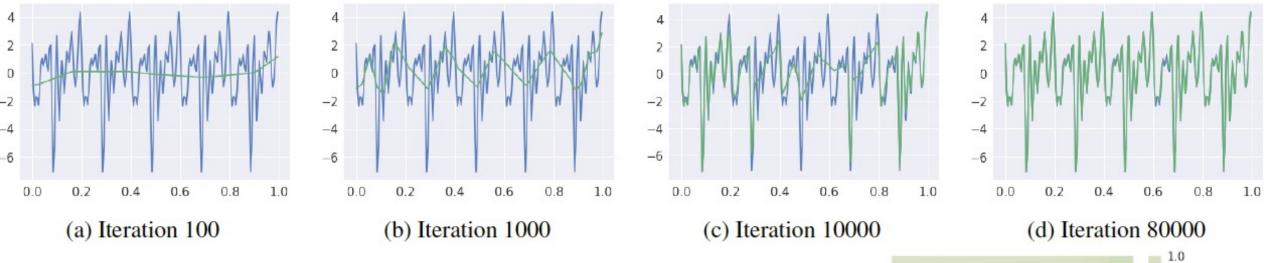
(although many PINN improvements exist!)



Scaling PINNs to higher frequencies



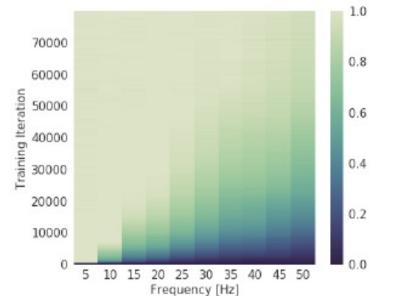
Spectral bias issue



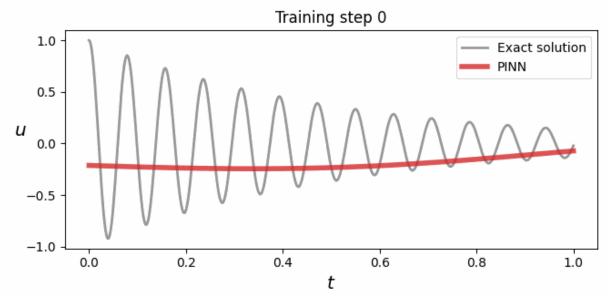
NNs prioritise learning **lower** frequency functions first

Under certain assumptions can be proved via neural tangent kernel theory

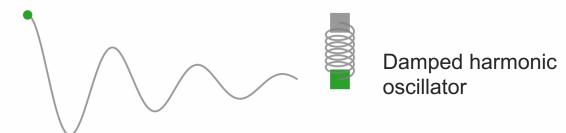
Rahaman, N., et al, On the spectral bias of neural networks. 36th International Conference on Machine Learning, ICML (2019)



Scaling PINNs to high frequency / multiscale problems



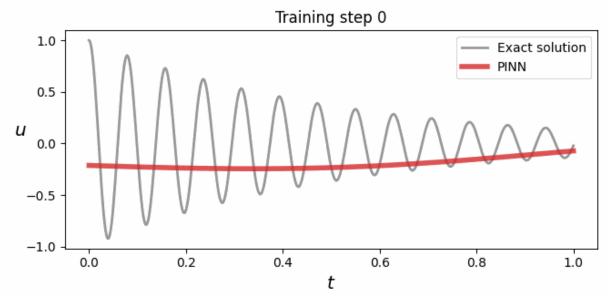
Network size: 2 hidden layers, 64 hidden units



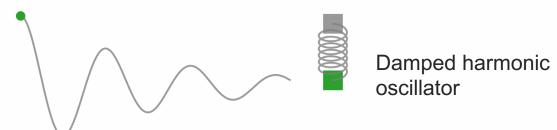
As higher frequencies are added:

- More collocation points required
- Larger neural network required
- Spectral bias slows convergence

Scaling PINNs to high frequency / multiscale problems



Network size: 2 hidden layers, 64 hidden units

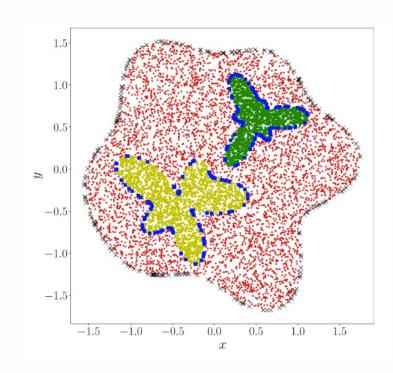


As higher frequencies are added:

- More collocation points required ($\propto \omega^d$)
- Larger neural network required ($\propto f(\omega)$)
- Spectral bias slows convergence ($\propto s(\omega)$)
- \Rightarrow Empirically, cost of training often $\sim \mathcal{O}(\omega^d f(\omega)s(\omega))$

c.f. FD simulation, where cost of simulation can scale like $\sim \mathcal{O}(\omega^d)$

PINNs + domain decomposition



Jagtap, A., et al., Extended physics-informed neural networks (XPINNs): A generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations. Communications in Computational Physics (2020)

Idea:

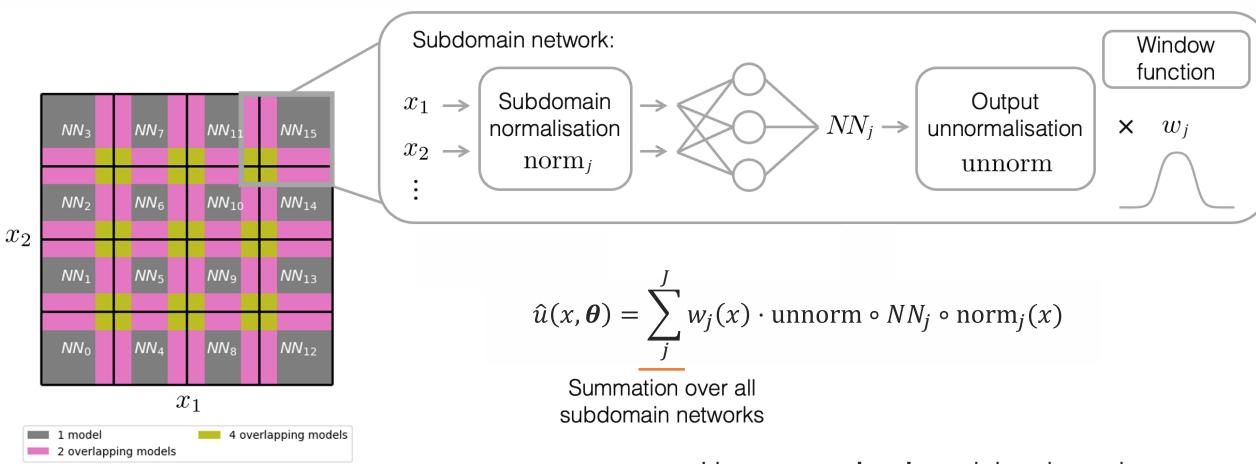
Take a "divide-and-conquer" strategy to model more complex problems:

- Divide modelling domain into many smaller subdomains
- 2. Use a separate neural network in each subdomain to model the solution

Hypothesis:

The resulting (coupled) local optimization problems are easier to solve than a single global problem

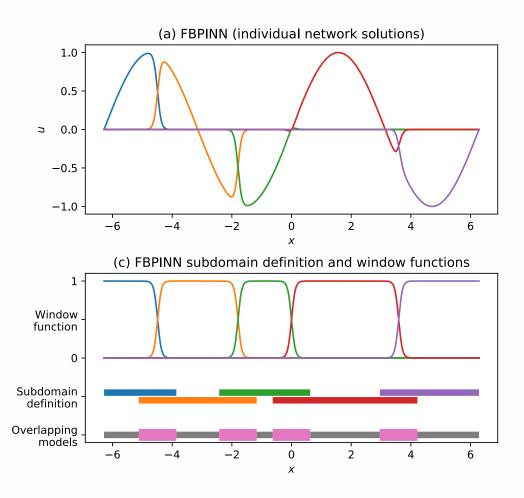
Finite basis PINNs (FBPINNs)

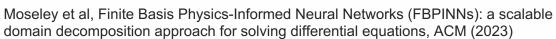


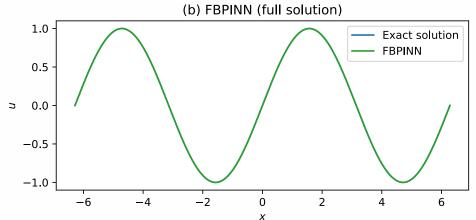
Moseley et al, Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable domain decomposition approach for solving differential equations, ACM (2023)

Idea: use **overlapping** subdomains and a **globally** defined solution ansatz

FBPINNs in 1D







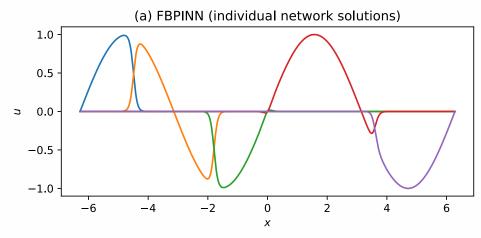
$$\hat{u}(x, m{ heta}) = \sum_{j}^{J} w_{j}(x) \cdot \mathrm{unnorm} \circ NN_{j} \circ \mathrm{norm}_{j}(x)$$

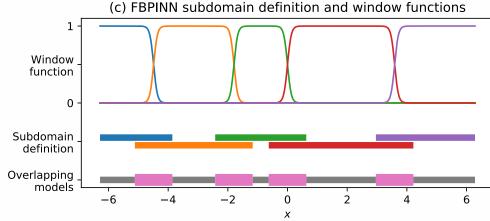
Window Subdomain function network

Individual subdomain normalisation

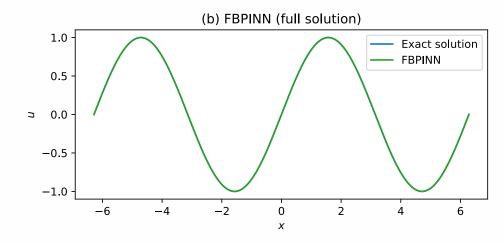
Idea: use **overlapping** subdomains and a **globally** defined solution ansatz

FBPINNs in 1D





Moseley et al, Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable domain decomposition approach for solving differential equations, ACM (2023)



$$\hat{u}(x, m{ heta}) = \sum_{j}^{J} w_{j}(x) \cdot \mathrm{unnorm} \circ NN_{j} \circ \mathrm{norm}_{j}(x)$$

Window Subdomain function network

Individual subdomain

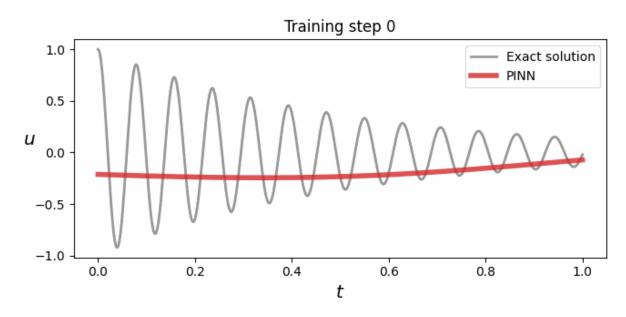
Notes:

 FBPINNs can be trained with same loss function as PINNs

normalisation

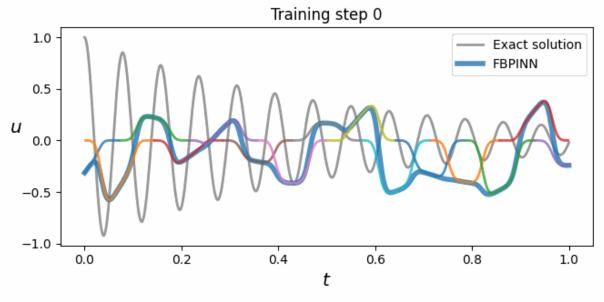
And can simply be thought of as a "custom architecture"

FBPINNs vs PINNs



Problem: PINNs **struggle** to solve high-frequency / multiscale problems

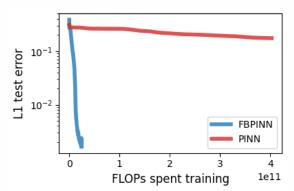
Damped harmonic oscillator



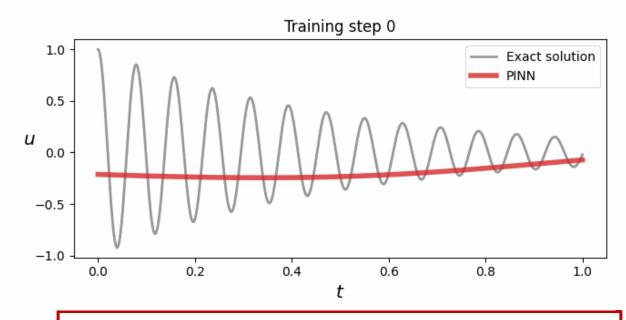
FBPINN solution

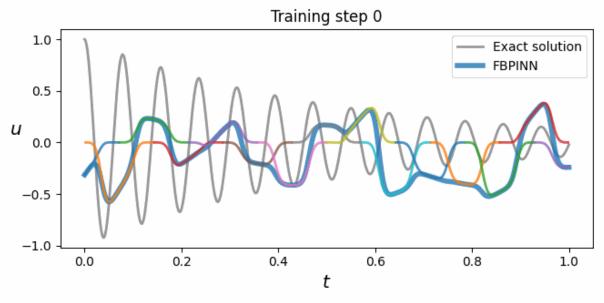
Number of subdomains: 15

Subdomain networks: 1 hidden layer, 32 hidden units



FBPINNs vs PINNs

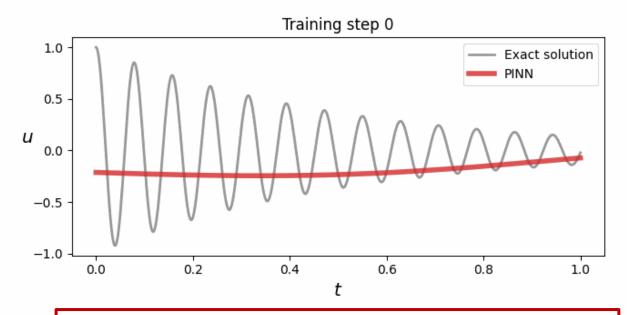


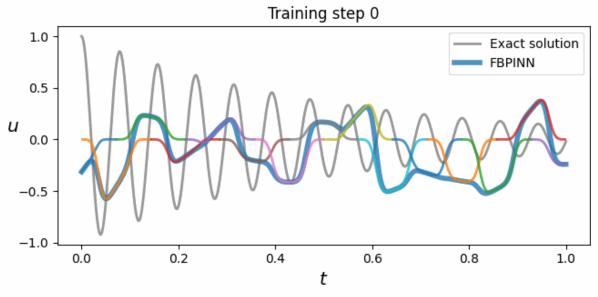


As higher frequencies are added:

- More collocation points required ($\propto \omega^d$)
- Larger neural network required ($\propto f(\omega)$)
- Spectral bias slows convergence ($\propto s(\omega)$)
- \Rightarrow Empirically, cost of training often $\sim \mathcal{O}(\omega^d f(\omega)s(\omega))$

FBPINNs vs PINNs





As higher frequencies are added:

- More collocation points required ($\propto \omega^d$)
- Larger neural network required ($\propto f(\omega)$)
- Spectral bias slows convergence ($\propto s(\omega)$)
- \Rightarrow Empirically, cost of training often $\sim \mathcal{O}(\omega^d f(\omega)s(\omega))$

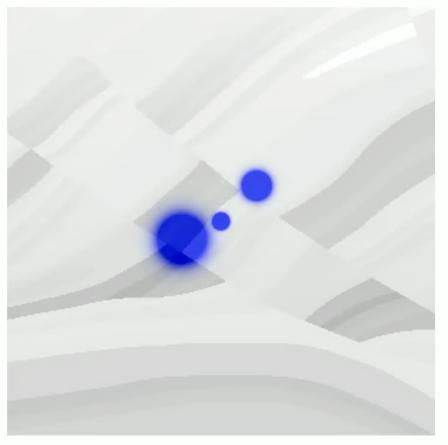
As higher frequencies are added:

- More collocation points required ($\propto \omega^d$)
- Same size network can be used in each subdomain
- Domain decomposition alleviates spectral bias
- \Rightarrow Empirically, cost of training can be closer to $\sim \mathcal{O}(\omega^d)$

Multi-scale simulation with FBPINNs

FBPINN solution

FD simulation



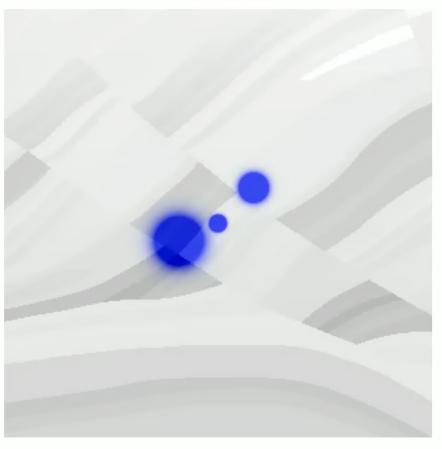
Number of subdomains: $60 \times 60 \times 60 = 216,000$

Total number of trainable parameters: 9 M

Multi-scale simulation with FBPINNs

FBPINN solution

FD simulation

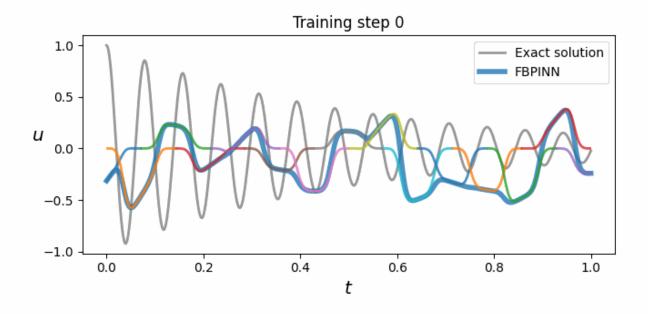


Training time: ~2 hrs on GPU (with optimised code)

Number of subdomains: $60 \times 60 \times 60 = 216,000$ Total number of trainable parameters: 9 M

FD simulation time: ~5 mins on CPU!

Why are FBPINNs still slow?



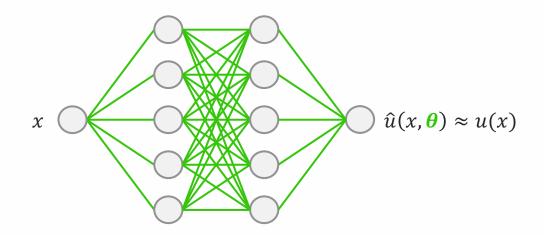
As higher frequencies are added:

- More collocation points required ($\propto \omega^d$)
- Same size network can be used in each subdomain
- Domain decomposition alleviates spectral bias
- \Rightarrow Empirically, cost of training can be closer to $\sim \mathcal{O}(\omega^d)$

BUT gradient descent is a slow optimiser (non-convex loss requires lots of iterations + backprop introduces lots of overhead)

..can we avoid gradient descent altogether?

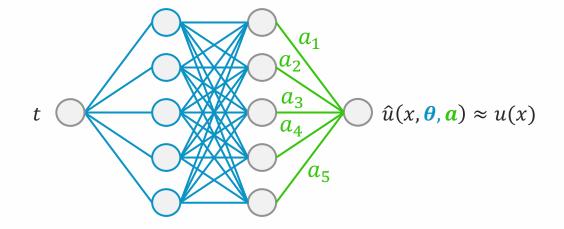
Idea – Extreme learning machines



Neural network

All weights trainable

$$\hat{u} = NN(x, \boldsymbol{\theta})$$



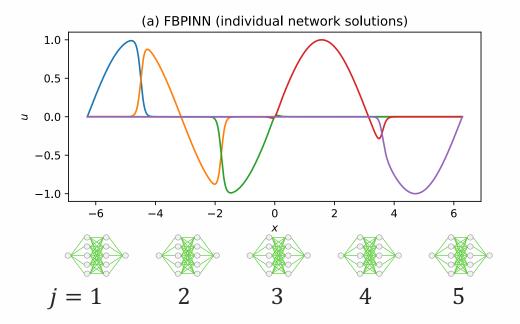
Extreme learning machine

Hidden weights are **randomly** initialised and **fixed**Only last layer **trainable**

$$\hat{u} = \sum_{k}^{K} a_{k} \phi(x, \boldsymbol{\theta}_{k})$$

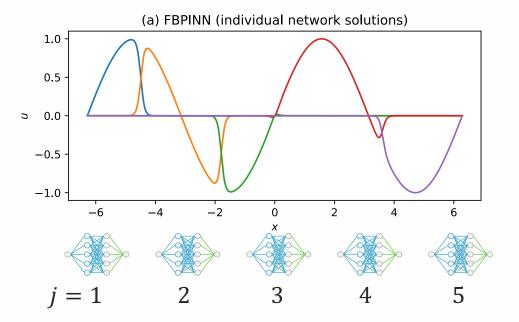
Huang, G. Bin, Zhu, Q. Y., & Siew, C. K. Extreme learning machine: Theory and applications. Neurocomputing. (2006).

FBPINN



$$\hat{u}(x, \boldsymbol{\theta}) = \sum_{j}^{J} w_{j}(x) NN_{j}(x, \boldsymbol{\theta}_{j})$$
 FBPINN Window Subdomain function network

(ignoring normalization functions for simplicity)



$$\hat{u}(x, \mathbf{a}) = \sum_{j}^{J} w_{j}(x) \sum_{k}^{K} a_{jk} \phi(x, \mathbf{\theta}_{jk})$$
 ELM-FBPINN ELM in each subdomain

J = total number of subdomainsK = number of basis functions per subdomain

Dwivedi, V., and Srinivasan, B. Physics Informed Extreme Learning Machine (PIELM)—A rapid method for the numerical solution of partial differential equations. Neurocomputing. (2020). Dong, S., and Li, Z. Local extreme learning machines and domain decomposition for solving linear and nonlinear partial differential equations. Computer Methods in Applied Mechanics and Engineering. (2021).

$$L = \sum_{i}^{N} \left(\left[m \frac{d^2}{dt^2} + \mu \frac{d}{dt} + k \right] \hat{u}(t_i, \boldsymbol{\theta}) \right)^2$$

$$\hat{u}(x, \mathbf{a}) = \sum_{j}^{J} w_{j}(x) \sum_{k}^{K} a_{jk} \phi(x, \mathbf{\theta}_{jk})$$
 ELM-FBPINN ELM in each subdomain

I = total number of subdomains

K = number of basis functions per subdomain

N = number of collocation points

(ignoring boundary loss for simplicity)

$$\hat{u}(x, \mathbf{a}) = \sum_{j}^{J} w_{j}(x) \sum_{k}^{K} a_{jk} \phi(x, \mathbf{\theta}_{jk})$$
 ELM-FBPINN ELM in each subdomain

$$L = \sum_{i}^{N} \left(\left[m \frac{d^{2}}{dt^{2}} + \mu \frac{d}{dt} + k \right] \hat{u}(t_{i}, \boldsymbol{\theta}) \right)^{2}$$

$$= \sum_{i}^{N} \left(\left[m \frac{d^{2}}{dt^{2}} + \mu \frac{d}{dt} + k \right] \sum_{j}^{J} w_{j}(t_{i}) \sum_{k}^{K} a_{jk} \phi(x, \boldsymbol{\theta}_{jk}) \right)^{2}$$

$$= \sum_{i}^{N} \left(\left[m \frac{d^{2}}{dt^{2}} + \mu \frac{d}{dt} + k \right] \sum_{j}^{J} w_{j}(t_{i}) \sum_{k}^{K} a_{jk} \phi(x, \boldsymbol{\theta}_{jk}) \right)^{2}$$

ELM-FBPINN

$$\hat{u}(x, \mathbf{a}) = \sum_{j}^{J} w_{j}(x) \sum_{k}^{K} a_{jk} \phi(x, \mathbf{\theta}_{jk})$$
 ELM-FBPINN ELM in each subdomain

$$L = \sum_{i}^{N} \left(\left[m \frac{d^{2}}{dt^{2}} + \mu \frac{d}{dt} + k \right] \hat{u}(t_{i}, \boldsymbol{\theta}) \right)^{2}$$

$$= \sum_{i}^{N} \left(\left[m \frac{d^{2}}{dt^{2}} + \mu \frac{d}{dt} + k \right] \sum_{j}^{J} w_{j}(t_{i}) \sum_{k}^{K} a_{jk} \phi(x, \boldsymbol{\theta}_{jk}) \right)^{2}$$

$$= \sum_{i}^{N} \left(\sum_{j}^{J} \sum_{k}^{K} a_{jk} \mathcal{N} w_{j}(t_{i}) \phi(t_{i}, \boldsymbol{\theta}_{jk}) \right)^{2}$$

$$= \sum_{i}^{N} \left(\sum_{j}^{J} \sum_{k}^{K} a_{jk} \mathcal{N} w_{j}(t_{i}) \phi(t_{i}, \boldsymbol{\theta}_{jk}) \right)^{2}, \quad \mathcal{N} = \left[m \frac{d^{2}}{dt^{2}} + \mu \frac{d}{dt} + k \right]$$

Assuming \mathcal{N} is a **linear** operator

$$\hat{u}(x, \mathbf{a}) = \sum_{j}^{J} w_{j}(x) \sum_{k}^{K} a_{jk} \phi(x, \mathbf{\theta}_{jk}) \quad \text{ELM-FBPINN}$$

$$\text{ELM in each}$$
subdomain

$$L = \sum_{i}^{N} \left(\left[m \frac{d^2}{dt^2} + \mu \frac{d}{dt} + k \right] \hat{u}(t_i, \boldsymbol{\theta}) \right)^2$$

$$K = \text{number of basis functions per } N = \text{number of collocation points}$$

I = total number of subdomains K = number of basis functions per subdomain

$$= \sum_{i}^{N} \left(\left[m \frac{d^2}{dt^2} + \mu \frac{d}{dt} + k \right] \sum_{j}^{J} w_j(t_i) \sum_{k}^{K} a_{jk} \phi(x, \boldsymbol{\theta}_{jk}) \right)^2$$

$$= \sum_{i}^{N} \left(\sum_{j}^{J} \sum_{k}^{K} a_{jk} \mathcal{N} w_{j}(t_{i}) \phi(t_{i}, \boldsymbol{\theta}_{jk}) \right)^{2} = \left\| \begin{pmatrix} \mathcal{N} w_{j}(t_{0}) \phi(t_{0}, \boldsymbol{\theta}_{00}) & \dots & \mathcal{N} w_{j}(t_{0}) \phi(t_{0}, \boldsymbol{\theta}_{JK}) \\ \vdots & \ddots & \vdots \\ \mathcal{N} w_{j}(t_{N}) \phi(t_{N}, \boldsymbol{\theta}_{00}) & \dots & \mathcal{N} w_{j}(t_{N}) \phi(t_{N}, \boldsymbol{\theta}_{JK}) \end{pmatrix} \begin{pmatrix} a_{00} \\ \vdots \\ a_{JK} \end{pmatrix} - \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} \right\|^{2}$$

$$\equiv \|M\boldsymbol{a} - \boldsymbol{h}\|^2$$

$$M: N \times JK$$
 $\boldsymbol{a}: JK$ $\boldsymbol{h}: N$

Linear optimisation

This is a linear least squares problem!

$$L(\mathbf{a}) = \|M\mathbf{a} - \mathbf{h}\|^2$$

The global minima is given by solving

where
$$A \mathbf{a}^* = \mathbf{b} \qquad \text{(normal equation)}$$

$$A = M^T M \qquad JK \times JK$$

$$\mathbf{b} = M^T \mathbf{h} \qquad JK$$

Linear optimisation

This is a linear least squares problem!

$$L(\mathbf{a}) = \|M\mathbf{a} - \mathbf{h}\|^2$$

The global minima is given by solving

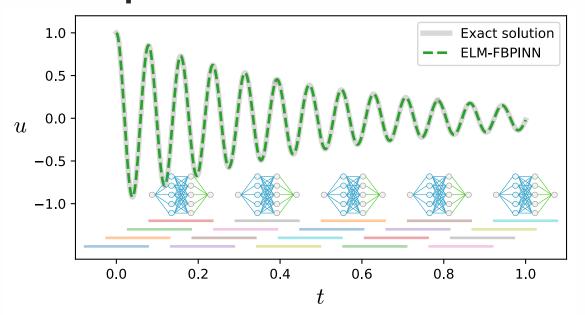
where
$$A \mathbf{a}^* = \mathbf{b} \qquad \text{(normal equation)}$$

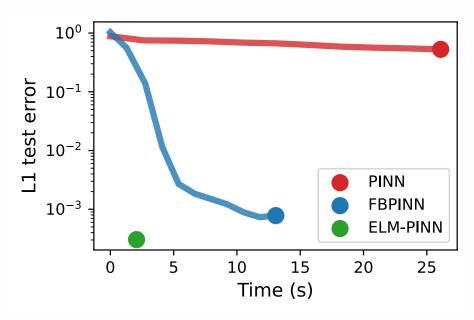
$$A = M^T M \quad JK \times JK$$

$$\mathbf{b} = M^T \mathbf{h} \quad JK$$

- By using a linear combination of fixed basis functions, we have turned the loss function from non-convex to convex (quadratic)
- I.e., we can now use linear solvers to train ELM-FBPINNs, instead of gradient descent!

Example – 1D harmonic oscillator





FBPINN / ELM-FBPINN:

20 subdomains

1 hidden layer, 8 hidden units (=basis functions)

Tanh activation

PINN / FBPINN: Adam optimiser, 0.001

learning rate

ELM-FBPINN: Conjugate gradient

linear solver

PINN:

2 hidden layers, 64 hidden units Tanh activation

Anderson, S., Dolean, V., Moseley, B., & Pestana, J. ELM-FBPINN: efficient finite-basis physics-informed neural networks. ArXiv. (2024).

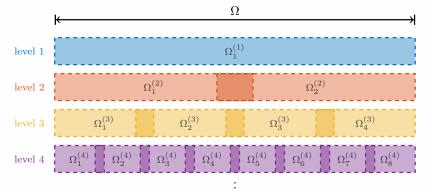
Example – 2D multi-scale Laplace

Multi-scale problem:

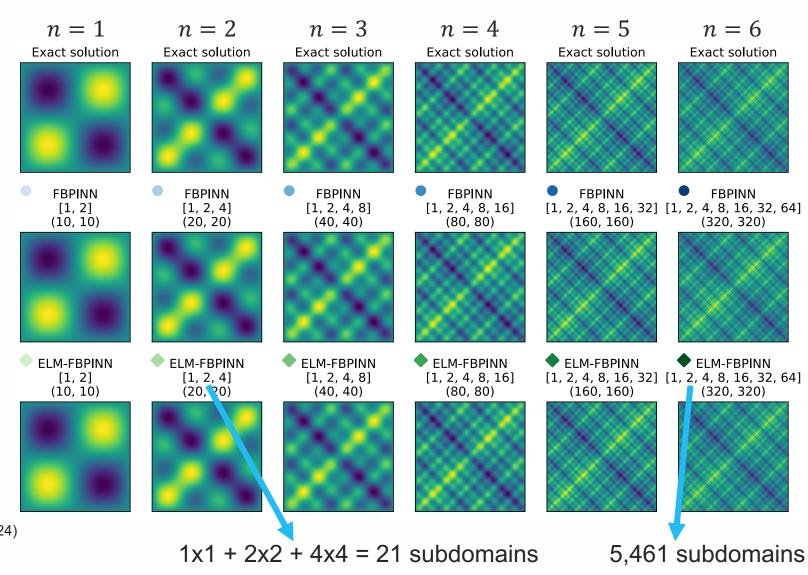
$$\nabla^{2} u(x_{1}, x_{2})$$

$$= -\frac{2}{n} \sum_{i}^{n} (2^{i} \pi)^{2} \sin(2^{i} \pi x_{1}) \sin(2^{i} \pi x_{2})$$

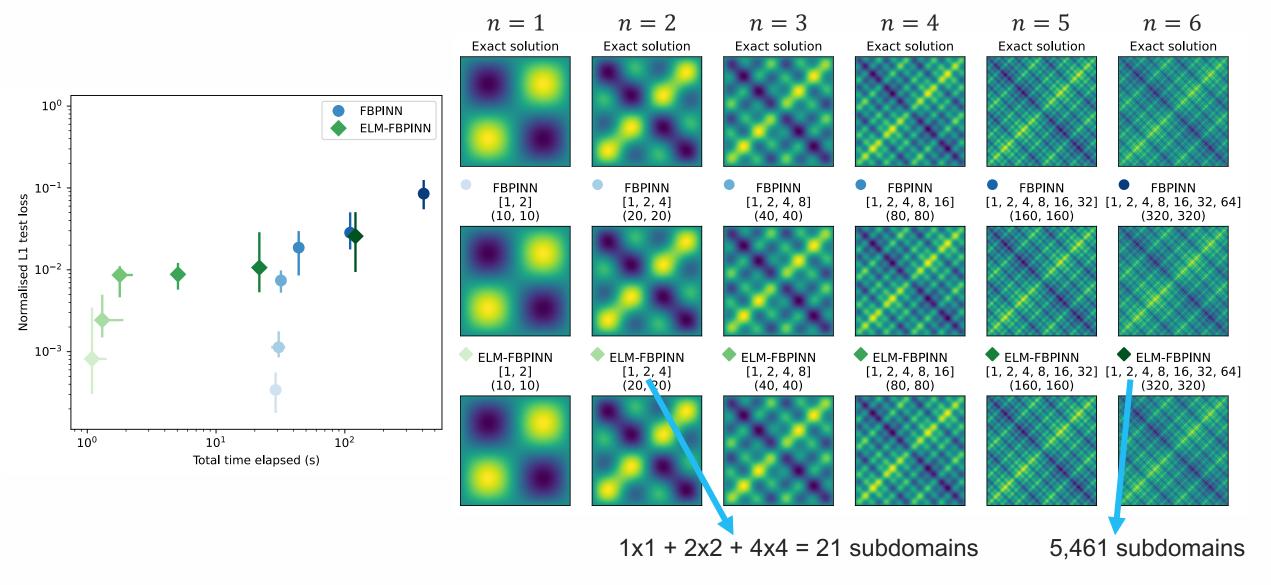
Multilevel domain decomposition:



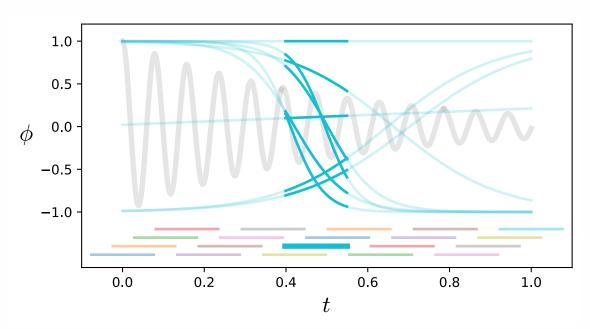
Dolean, V., et al, Multilevel domain decomposition-based architectures for physics-informed neural networks, CMAME (2024)



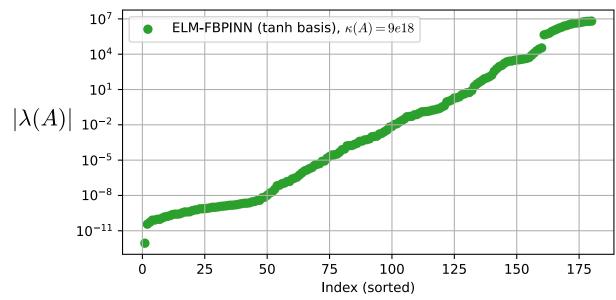
Example – 2D multi-scale Laplace



Challenge 1: Linear dependence between basis functions \Rightarrow poorly conditioned matrix $A a^* = b$



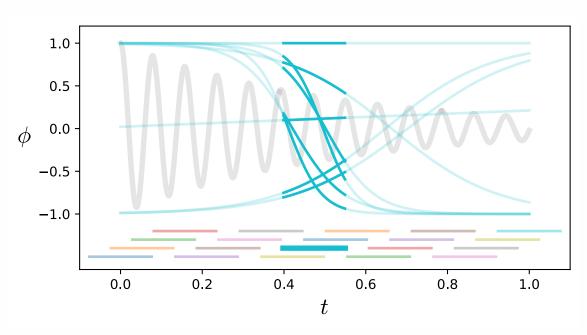
Conjugate gradient solver requires ~5000 iterations

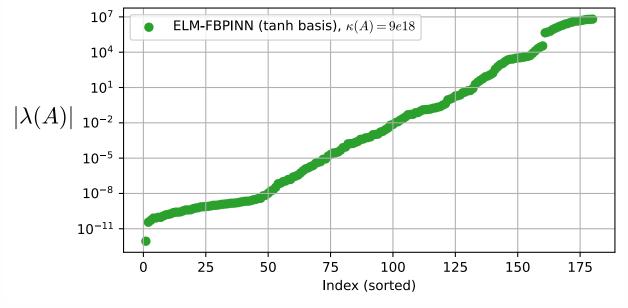


$$M = \begin{pmatrix} \mathcal{N}w_j(t_0)\phi(t_0, \boldsymbol{\theta}_{00}) & \dots & \mathcal{N}w_j(t_0)\phi(t_0, \boldsymbol{\theta}_{JK}) \\ \vdots & \ddots & \vdots \\ \mathcal{N}w_j(t_N)\phi(t_N, \boldsymbol{\theta}_{00}) & \dots & \mathcal{N}w_j(t_N)\phi(t_N, \boldsymbol{\theta}_{JK}) \end{pmatrix},$$

$$A = M^T M$$

Challenge 1: Linear dependence between basis functions \Rightarrow poorly conditioned matrix $A a^* = b$





Possible solution: use **preconditioning**,

see:

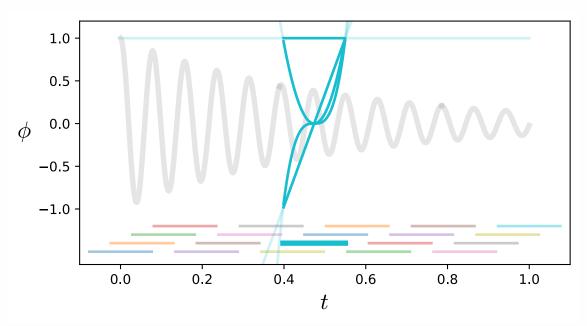
van Beek, J. W., Dolean, V., & Moseley, B. (2025). Local feature filtering for scalable and well-conditioned Random Feature Methods. ArXiv.

Shang, Y., Heinlein, A., Mishra, S., & Wang, F. (2025). Overlapping Schwarz preconditioners for randomized neural networks with domain decomposition. Computer Methods in Applied Mechanics and Engineering.

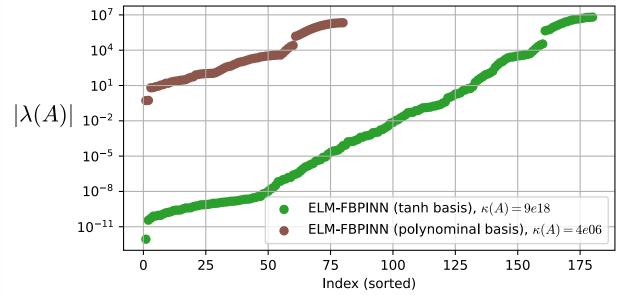
$$M = \begin{pmatrix} \mathcal{N}w_j(t_0)\phi(t_0, \boldsymbol{\theta}_{00}) & \dots & \mathcal{N}w_j(t_0)\phi(t_0, \boldsymbol{\theta}_{JK}) \\ \vdots & \ddots & \vdots \\ \mathcal{N}w_j(t_N)\phi(t_N, \boldsymbol{\theta}_{00}) & \dots & \mathcal{N}w_j(t_N)\phi(t_N, \boldsymbol{\theta}_{JK}) \end{pmatrix},$$

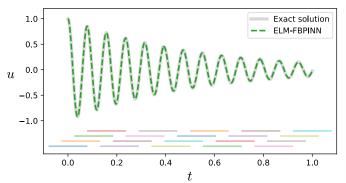
$$A = M^T M$$

Challenge 1: Linear dependence between basis functions \Rightarrow poorly conditioned matrix $A a^* = b$

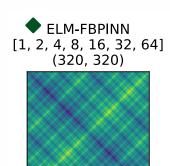


Possible solution: use a **polynomial basis** (= Taylor approximation)
Conjugate gradient solver requires ~50 iterations

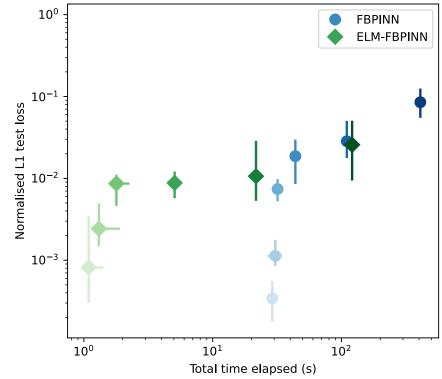




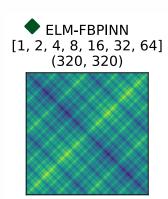
Challenge 2: **Big matrix!** $A a^* = b$ $A: JK \times JK b: JK$



J = 5,461, K = 6A: 32,766×32,766 = 1 billion elements!

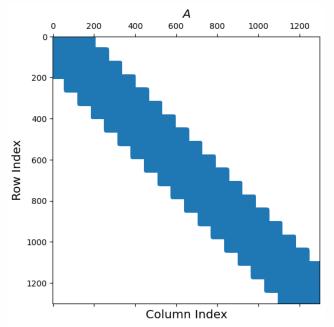


Challenge 2: **Big matrix!** $A a^* = b$ $A: JK \times JK b: JK$

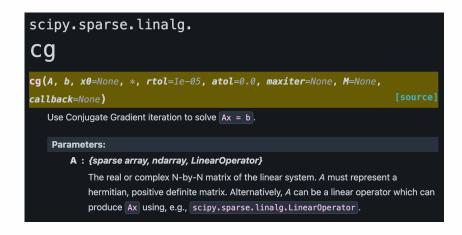


J = 5,461, K = 6A: 32,766×32,766 = 1 billion elements!

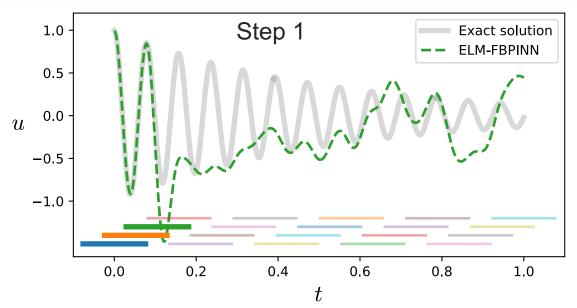
Solution: exploit sparsity

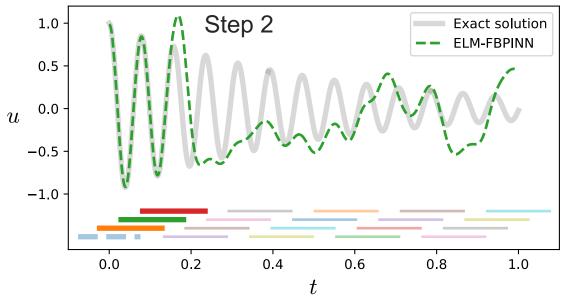


Use sparse solver which only uses matvec products



Time scheduling



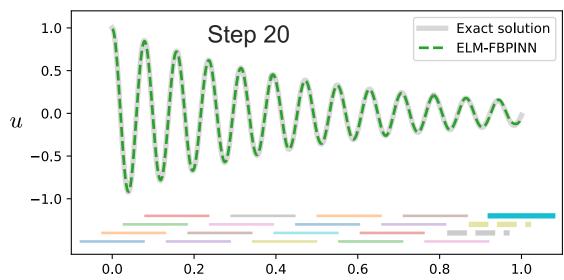


Another solution: use time scheduling

$$J = 20, K = 8$$

 $A: 160 \times 160$

But with only 3 active models / step $A: 24 \times 24$



Can physics-informed neural networks (PINNs) beat finite difference / finite element methods?

Can physics-informed neural networks beat the finite element method? 3

IMA Journal of Applied Mathematics, Volume 89, Issue 1, January 2024, Pages 143–174, https://doi.org/10.1093/imamat/hxae011

Published: 23 May 2024 Article history ▼

7. Discussion and conclusions

After having investigated each of the PDEs on its own, let us now discuss and draw conclusions from the results as a whole. Considering the solution time and accuracy, PINNs are not able to beat FEM in our study. In all the examples that we have studied, the FEM solutions were faster at the same or at a higher accuracy.

Solving inverse problems in physics by optimizing a discrete loss: Fast and accurate learning without neural networks 8

PNAS Nexus, Volume 3, Issue 1, January 2024, pgae005,

https://doi.org/10.1093/pnasnexus/pgae005

Published: 11 January 2024 Article history ▼

Conclusion

We introduce the ODIL framework for solving inverse problems for PDEs by casting their discretization as an optimization problem and applying optimization techniques that are widely available in machine-learning software. The concept of casting the PDE as is closely related to the neural network formulations proposed by (15–17) and recently revived as PINNs. However, the fact that we use the discrete approximation of the equations allows for ODIL to be orders of magnitude more efficient in terms of computational cost and accuracy compared to the PINN for which complex flow problems "remain elusive" (71).

Are PINNs becoming FEM?

ELM-FBPINN

$$m\frac{d^2u}{dt^2} + \mu\frac{du}{dt} + ku = f$$

$$\hat{u}(t, \mathbf{a}) = \sum_{j}^{J} w_{j}(t) \sum_{k}^{K} a_{jk} \phi(t, \boldsymbol{\theta}_{jk})$$

$$L(\boldsymbol{a}) = \sum_{i}^{N} \left(\left[m \frac{d^{2}}{dt^{2}} + \mu \frac{d}{dt} + k \right] \hat{u}(t_{i}, \boldsymbol{a}) - f(t_{i}) \right)^{2}$$

$$= \|M\boldsymbol{a} - \boldsymbol{h}\|^{2}$$

$$\Rightarrow A\boldsymbol{a} - \boldsymbol{b} = \boldsymbol{0}$$

$$A: JK \times JK \quad \boldsymbol{b}: JK$$
(sparse & symmetric)

Finite element method

Are PINNs becoming FEM?

ELM-FBPINN

$$m\frac{d^2u}{dt^2} + \mu \frac{du}{dt} + ku = f$$

$$\hat{u}(t, \boldsymbol{a}) = \sum_{j}^{J} w_{j}(t) \sum_{k}^{K} a_{jk} \phi(t, \boldsymbol{\theta}_{jk})$$

$$L(\boldsymbol{a}) = \sum_{i}^{N} \left(\left[m \frac{d^{2}}{dt^{2}} + \mu \frac{d}{dt} + k \right] \hat{u}(t_{i}, \boldsymbol{a}) - f(t_{i}) \right)^{2}$$

$$= \|M\boldsymbol{a} - \boldsymbol{h}\|^{2}$$

$$\Rightarrow A\boldsymbol{a} - \boldsymbol{b} = \boldsymbol{0}$$

$$A: JK \times JK \quad \boldsymbol{b}: JK$$
(sparse & symmetric)

Finite element method

$$m\frac{d^2u}{dt^2} + \mu\frac{du}{dt} + ku = f$$

$$\hat{u}(t, \mathbf{a}) = \sum_{j}^{J} a_{j} \phi_{j}(t)$$

$$L(\boldsymbol{a}) = \sum_{i}^{N} \left(\left[m \frac{d^2}{dt^2} + \mu \frac{d}{dt} + k \right] \hat{u}(t_i, \boldsymbol{a}) - f(t_i) \right)^2 \qquad \int_{0}^{T} \phi_i(t) \left[m \frac{d^2}{dt^2} + \mu \frac{d}{dt} + k \right] \hat{u}(t, \boldsymbol{a}) dt = \int_{0}^{T} \phi_i(t) f dt \quad \forall i = 0, ..., J \\ \Rightarrow (-mL + \mu D + kM) \boldsymbol{a} = \boldsymbol{b}$$

$$L, D, M: J \times J$$
 b: J (sparse & symmetric)

Workshop overview

Session 1: Intro to PINNs

- Lecture (1 hr): Introduction to SciML and PINNs
- Code-along (30 min): Training a PINN in PyTorch

Session 2: Accelerating PINNs with JAX

- Lecture (30 min): Introduction to JAX
- Practical (1 hr): Introduction to JAX and coding a PINN from scratch in JAX

Session 3: Accelerating PINNs with domain decomposition and NLA

- Lecture (30 min): Challenges with PINNs and improving their performance with domain decomposition and numerical linear algebra
- Practical (1 hr): Coding finite basis PINNs and extreme learning machine FBPINNs in JAX

