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Scalability challenges of PINNs

Advantages of PINNs

• Mesh-free
• Can solve forward and inverse 

problems, and seamlessly incorporate 
observational data

• Mostly unsupervised
• Can perform well for high-dimensional 

PDEs

Limitations of PINNs

• Computational cost often high 
(especially for forward-only 
problems)

• Can be hard to optimise
• Challenging to scale to high-

frequency, multi-scale problems

(although many PINN improvements 
exist!)
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Scaling PINNs to higher frequencies
321 free 
parameters

66,433 free 
parameters

PINN solving:

𝑑𝑢
𝑑𝑥 = cos 𝜔𝑥

𝑢 0 = 0

Moseley et al, Finite Basis Physics-Informed Neural Networks (FBPINNs): 
a scalable domain decomposition approach for solving differential 
equations, ACM (2023)

Problem: PINNs struggle to solve 
high-frequency / multiscale 
problems
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Spectral bias issue

NNs prioritise learning lower frequency functions first

Under certain assumptions can be proved via neural tangent 
kernel theory

Rahaman, N., et al, On the spectral bias of neural networks. 36th International 
Conference on Machine Learning, ICML (2019)
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Scaling PINNs to high frequency / multiscale problems

As higher frequencies are added:

• More collocation points required 
• Larger neural network required
• Spectral bias slows convergence

Damped harmonic 
oscillator

Network size: 2 hidden layers, 64 hidden units
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Scaling PINNs to high frequency / multiscale problems

As higher frequencies are added:

• More collocation points required (∝ 𝜔!)
• Larger neural network required (∝ 𝑓(𝜔))
• Spectral bias slows convergence (∝ 𝑠(𝜔))

Þ Empirically, cost of training often 
~	𝒪(𝜔!𝑓 𝜔 𝑠 𝜔 )

c.f. FD simulation, where cost of simulation 
can scale like ~𝒪(𝜔!)

Damped harmonic 
oscillator

Network size: 2 hidden layers, 64 hidden units
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PINNs + domain decomposition
Idea:

Take a “divide-and-conquer” strategy to model more 
complex problems:

1. Divide modelling domain into many smaller 
subdomains

2. Use a separate neural network in each subdomain to 
model the solution

Hypothesis:

The resulting (coupled) local optimization problems are 
easier to solve than a single global problem

Jagtap, A., et al., Extended physics-informed neural networks 
(XPINNs): A generalized space-time domain decomposition based 
deep learning framework for nonlinear partial differential equations. 
Communications in Computational Physics (2020)
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Finite basis PINNs (FBPINNs)

Moseley et al, Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable 
domain decomposition approach for solving differential equations, ACM (2023)

Idea: use overlapping subdomains and a 
globally defined solution ansatz

*𝑢 𝑥, 𝜽 =0
"

#

𝑤" 𝑥 ⋅ unnorm ∘ 𝑁𝑁" ∘ norm"(𝑥)

𝑗

𝑗 𝑗
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FBPINNs in 1D

Window 
function

Subdomain 
network

Individual subdomain 
normalisation

Moseley et al, Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable 
domain decomposition approach for solving differential equations, ACM (2023)

Idea: use overlapping subdomains and a 
globally defined solution ansatz

*𝑢 𝑥, 𝜽 =-
!

"

𝑤! 𝑥 ⋅ unnorm ∘ 𝑁𝑁! ∘ norm!(𝑥)
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FBPINNs in 1D

Moseley et al, Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable 
domain decomposition approach for solving differential equations, ACM (2023)

Notes:
• FBPINNs can be trained with same loss function as 

PINNs
• And can simply be thought of as a “custom 

architecture”

Window 
function

Subdomain 
network

Individual subdomain 
normalisation

*𝑢 𝑥, 𝜽 =-
!

"

𝑤! 𝑥 ⋅ unnorm ∘ 𝑁𝑁! ∘ norm!(𝑥)
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FBPINNs vs PINNs

FBPINN solution

Damped harmonic 
oscillator

Number of subdomains: 15
Subdomain networks: 1 hidden layer, 32 hidden units

Problem: PINNs struggle to solve high-
frequency / multiscale problems
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FBPINNs vs PINNs

As higher frequencies are added:

• More collocation points required (∝ 𝜔#)
• Larger neural network required (∝ 𝑓(𝜔))
• Spectral bias slows convergence (∝ 𝑠(𝜔))

Þ Empirically, cost of training often 
~	𝒪(𝜔#𝑓 𝜔 𝑠 𝜔 )
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FBPINNs vs PINNs

As higher frequencies are added:

• More collocation points required (∝ 𝜔#)
• Same size network can be used in each 

subdomain 
• Domain decomposition alleviates spectral bias
Þ Empirically, cost of training can be closer to 

~	𝒪(𝜔#)

As higher frequencies are added:

• More collocation points required (∝ 𝜔#)
• Larger neural network required (∝ 𝑓(𝜔))
• Spectral bias slows convergence (∝ 𝑠(𝜔))

Þ Empirically, cost of training often 
~	𝒪(𝜔#𝑓 𝜔 𝑠 𝜔 )
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Multi-scale simulation with FBPINNs

Number of subdomains: 60 x 60 x 60 = 216,000
Total number of trainable parameters: 9 M
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Multi-scale simulation with FBPINNs

Number of subdomains: 60 x 60 x 60 = 216,000
Total number of trainable parameters: 9 M

FD simulation time: ~5 mins 
on CPU!

Training time: ~2 hrs on GPU 
(with optimised code)
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Why are FBPINNs still slow?
As higher frequencies are added:

• More collocation points required (∝ 𝜔!)
• Same size network can be used in each 

subdomain 
• Domain decomposition alleviates spectral 

bias
Þ Empirically, cost of training can be closer 

to ~	𝒪(𝜔!)

BUT gradient descent is a slow optimiser 
(non-convex loss requires lots of iterations + 
backprop introduces lots of overhead)

..can we avoid gradient descent altogether?
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Idea – Extreme learning machines

𝑥 "𝑢 𝑥, 𝜽 ≈ 𝑢(𝑥)

Neural network

𝑡 "𝑢 𝑥, 𝜽, 𝒂 ≈ 𝑢(𝑥)

Extreme learning machine

All weights trainable Hidden weights are randomly initialised and fixed
Only last layer trainable

Huang, G. Bin, Zhu, Q. Y., & Siew, C. K. Extreme learning 
machine: Theory and applications. Neurocomputing. (2006). 

*𝑢 =-
$

%

𝑎$𝜙(𝑥, 𝜽$)*𝑢 = 𝑁𝑁(𝑥, 𝜽)

𝑎&
𝑎'
𝑎(
𝑎)

𝑎*
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FBPINN

𝑗 = 1	 2	 3	 4	 5

*𝑢 𝑥, 𝜽 =-
!

"

𝑤! 𝑥 	𝑁𝑁!(𝑥, 𝜽!)

Window 
function

Subdomain 
network

FBPINN

(ignoring normalization functions for simplicity)
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Extreme learning machine (ELM) FBPINNs

Dwivedi, V., and Srinivasan, B. Physics Informed Extreme Learning Machine (PIELM)–A rapid method for 
the numerical solution of partial differential equations. Neurocomputing. (2020). 
Dong, S., and Li, Z. Local extreme learning machines and domain decomposition for solving linear and 
nonlinear partial differential equations. Computer Methods in Applied Mechanics and Engineering. (2021).

ELM in each 
subdomain

ELM-FBPINN*𝑢 𝑥, 𝒂 =-
!

"

𝑤! 𝑥 -
$

%

𝑎!$𝜙(𝑥, 𝜽!$)

𝑗 = 1	 2	 3	 4	 5

𝐽 = total number of subdomains
𝐾 = number of basis functions per subdomain
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𝐿 =-
+

,

𝑚
𝑑'

𝑑𝑡' + 𝜇
𝑑
𝑑𝑡 + 𝑘 *𝑢 𝑡+ , 𝜽

'

=-
+

,

𝑚
𝑑'

𝑑𝑡' + 𝜇
𝑑
𝑑𝑡 + 𝑘 -

!

"

𝑤! 𝑡+ -
$

%

𝑎!$𝜙(𝑥, 𝜽!$)

'

=-
+

,

-
!

"

-
$

%

𝑎!$𝒩𝑤! 𝑡+ 𝜙 𝑡+ , 𝜽!$

'

=
𝒩𝑤! 𝑡- 𝜙 𝑡-, 𝜽-- … 𝒩𝑤! 𝑡- 𝜙 𝑡-, 𝜽"%

⋮ ⋱ ⋮
𝒩𝑤! 𝑡, 𝜙 𝑡,, 𝜽-- … 𝒩𝑤! 𝑡, 𝜙 𝑡,, 𝜽"%

𝑎--
⋮
𝑎"%

−
0
⋮
0

'

Extreme learning machine (ELM) FBPINNs

ELM in each 
subdomain

ELM-FBPINN

(ignoring boundary loss for simplicity)

*𝑢 𝑥, 𝒂 =-
!

"

𝑤! 𝑥 -
$

%

𝑎!$𝜙(𝑥, 𝜽!$)

𝐽 = total number of subdomains
𝐾 = number of basis functions per subdomain
𝑁 = number of collocation points
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𝐿 =-
+

,

𝑚
𝑑'

𝑑𝑡' + 𝜇
𝑑
𝑑𝑡 + 𝑘 *𝑢 𝑡+ , 𝜽

'

=-
+

,

𝑚
𝑑'

𝑑𝑡' + 𝜇
𝑑
𝑑𝑡 + 𝑘 -

!

"

𝑤! 𝑡+ -
$

%

𝑎!$𝜙(𝑥, 𝜽!$)

'

=-
+

,

-
!

"

-
$

%

𝑎!$𝒩𝑤! 𝑡+ 𝜙 𝑡+ , 𝜽!$

'

=
𝒩𝑤! 𝑡- 𝜙 𝑡-, 𝜽-- … 𝒩𝑤! 𝑡- 𝜙 𝑡-, 𝜽"%

⋮ ⋱ ⋮
𝒩𝑤! 𝑡, 𝜙 𝑡,, 𝜽-- … 𝒩𝑤! 𝑡, 𝜙 𝑡,, 𝜽"%

𝑎--
⋮
𝑎"%

−
0
⋮
0

'

Extreme learning machine (ELM) FBPINNs

ELM-FBPINN

ELM in each 
subdomain

ELM-FBPINN*𝑢 𝑥, 𝒂 =-
!

"

𝑤! 𝑥 -
$

%

𝑎!$𝜙(𝑥, 𝜽!$)

𝐽 = total number of subdomains
𝐾 = number of basis functions per subdomain
𝑁 = number of collocation points
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𝐿 =-
+

,

𝑚
𝑑'

𝑑𝑡' + 𝜇
𝑑
𝑑𝑡 + 𝑘 *𝑢 𝑡+ , 𝜽

'

=-
+

,

𝑚
𝑑'

𝑑𝑡' + 𝜇
𝑑
𝑑𝑡 + 𝑘 -

!

"

𝑤! 𝑡+ -
$

%

𝑎!$𝜙(𝑥, 𝜽!$)

'

=-
+

,

-
!

"

-
$

%

𝑎!$𝒩𝑤! 𝑡+ 𝜙 𝑡+ , 𝜽!$

'

=
𝒩𝑤! 𝑡- 𝜙 𝑡-, 𝜽-- … 𝒩𝑤! 𝑡- 𝜙 𝑡-, 𝜽"%

⋮ ⋱ ⋮
𝒩𝑤! 𝑡, 𝜙 𝑡,, 𝜽-- … 𝒩𝑤! 𝑡, 𝜙 𝑡,, 𝜽"%

𝑎--
⋮
𝑎"%

−
0
⋮
0

'

Extreme learning machine (ELM) FBPINNs

, 𝒩 = 𝑚
𝑑'

𝑑𝑡' + 𝜇
𝑑
𝑑𝑡 + 𝑘

Assuming 𝒩 is a linear operator 

ELM in each 
subdomain

ELM-FBPINN*𝑢 𝑥, 𝒂 =-
!

"

𝑤! 𝑥 -
$

%

𝑎!$𝜙(𝑥, 𝜽!$)

𝐽 = total number of subdomains
𝐾 = number of basis functions per subdomain
𝑁 = number of collocation points
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𝐿 =-
+

,

𝑚
𝑑'

𝑑𝑡' + 𝜇
𝑑
𝑑𝑡 + 𝑘 *𝑢 𝑡+ , 𝜽
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+
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𝑚
𝑑'

𝑑𝑡' + 𝜇
𝑑
𝑑𝑡 + 𝑘 -

!

"

𝑤! 𝑡+ -
$

%

𝑎!$𝜙(𝑥, 𝜽!$)

'

=-
+

,

-
!
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-
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%

𝑎!$𝒩𝑤! 𝑡+ 𝜙 𝑡+ , 𝜽!$
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=
𝒩𝑤! 𝑡- 𝜙 𝑡-, 𝜽-- … 𝒩𝑤! 𝑡- 𝜙 𝑡-, 𝜽"%

⋮ ⋱ ⋮
𝒩𝑤! 𝑡, 𝜙 𝑡,, 𝜽-- … 𝒩𝑤! 𝑡, 𝜙 𝑡,, 𝜽"%

𝑎--
⋮
𝑎"%

−
0
⋮
0

'

Extreme learning machine (ELM) FBPINNs

≡ 𝑀𝒂 − 𝒉 '

𝑀:𝑁	×	𝐽𝐾 𝒉:𝑁𝒂: 𝐽𝐾

ELM in each 
subdomain

ELM-FBPINN*𝑢 𝑥, 𝒂 =-
!

"

𝑤! 𝑥 -
$

%

𝑎!$𝜙(𝑥, 𝜽!$)

𝐽 = total number of subdomains
𝐾 = number of basis functions per subdomain
𝑁 = number of collocation points
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This is a linear least squares problem! 

𝐿 𝒂 = 𝑀𝒂 − 𝒉 '

The global minima is given by solving

𝐴	𝒂∗ = 𝒃
where 

𝐴 = 𝑀/𝑀
𝒃 = 𝑀/𝒉

Linear optimisation

𝐽𝐾	×	𝐽𝐾
𝐽𝐾

(normal equation)

Workshop on Scalable Physics-Informed Neural Networks | Session 3 – Challenges with PINNs and Improving Their Performance



25

This is a linear least squares problem! 

𝐿 𝒂 = 𝑀𝒂 − 𝒉 '

The global minima is given by solving

𝐴	𝒂∗ = 𝒃
where 

𝐴 = 𝑀/𝑀
𝒃 = 𝑀/𝒉

Linear optimisation

𝐽𝐾	×	𝐽𝐾
𝐽𝐾

(normal equation)

• By using a linear combination of fixed basis 
functions, we have turned the loss function from 
non-convex to convex (quadratic)

• I.e., we can now use linear solvers to train ELM-
FBPINNs, instead of gradient descent! ✅
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Example – 1D harmonic oscillator

FBPINN / ELM-FBPINN:
20 subdomains
1 hidden layer, 8 hidden units (=basis functions)
Tanh activation

PINN:
2 hidden layers, 64 hidden units
Tanh activation

PINN / FBPINN: Adam optimiser, 0.001 
learning rate
ELM-FBPINN: Conjugate gradient 
linear solver

Anderson, S., Dolean, V., Moseley, B., & Pestana, J. ELM-FBPINN: efficient 
finite-basis physics-informed neural networks. ArXiv. (2024). 
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Example – 2D multi-scale Laplace

1x1 + 2x2 + 4x4 = 21 subdomains

𝑛 = 1 𝑛 = 2 𝑛 = 4 𝑛 = 5 𝑛 = 6𝑛 = 3

!

level 1 !
(1)
1

level 2 !
(2)
1 !

(2)
2

level 3 !
(3)
1 !

(3)
2 !

(3)
3 !

(3)
4

level 4 !
(4)
1 !

(4)
2 !

(4)
3 !

(4)
4 !

(4)
5 !

(4)
6 !

(4)
7 !

(4)
8

...

Multi-scale problem:

∇'𝑢 𝑥&, 𝑥'

= −
2
𝑛-

+

0

2+𝜋 ' sin 2+𝜋𝑥& sin 2+𝜋𝑥'

Multilevel domain decomposition:

5,461 subdomains

Dolean, V., et al, Multilevel domain decomposition-based 
architectures for physics-informed neural networks, CMAME (2024) 
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Example – 2D multi-scale Laplace

1x1 + 2x2 + 4x4 = 21 subdomains 5,461 subdomains

𝑛 = 1 𝑛 = 2 𝑛 = 4 𝑛 = 5 𝑛 = 6𝑛 = 3
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Challenges with ELM-FBPINNs

Challenge 1: Linear dependence between basis functions ⟹ poorly conditioned matrix  𝐴	𝒂∗ = 𝒃

Conjugate gradient solver requires ~5000 
iterations 𝑀 =

𝒩𝑤! 𝑡- 𝜙 𝑡-, 𝜽-- … 𝒩𝑤! 𝑡- 𝜙 𝑡-, 𝜽"%
⋮ ⋱ ⋮

𝒩𝑤! 𝑡, 𝜙 𝑡,, 𝜽-- … 𝒩𝑤! 𝑡, 𝜙 𝑡,, 𝜽"%
,

𝐴 = 𝑀/𝑀
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Challenges with ELM-FBPINNs

Challenge 1: Linear dependence between basis functions ⟹ poorly conditioned matrix  𝐴	𝒂∗ = 𝒃

Possible solution: use preconditioning, 
see: van Beek, J. W., Dolean, V., & Moseley, B. (2025). Local feature filtering for 

scalable and well-conditioned Random Feature Methods. ArXiv.

Shang, Y., Heinlein, A., Mishra, S., & Wang, F. (2025). Overlapping 
Schwarz preconditioners for randomized neural networks with domain 
decomposition. Computer Methods in Applied Mechanics and Engineering.

𝑀 =
𝒩𝑤! 𝑡- 𝜙 𝑡-, 𝜽-- … 𝒩𝑤! 𝑡- 𝜙 𝑡-, 𝜽"%

⋮ ⋱ ⋮
𝒩𝑤! 𝑡, 𝜙 𝑡,, 𝜽-- … 𝒩𝑤! 𝑡, 𝜙 𝑡,, 𝜽"%

,

𝐴 = 𝑀/𝑀
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Possible solution: use a polynomial 
basis (= Taylor approximation)
Conjugate gradient solver requires ~50 
iterations

Challenges with ELM-FBPINNs

Challenge 1: Linear dependence between basis functions ⟹ poorly conditioned matrix  𝐴	𝒂∗ = 𝒃
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Challenges with ELM-FBPINNs

Challenge 2: Big matrix!  𝐴	𝒂∗ = 𝒃
𝐴: 𝐽𝐾	×	𝐽𝐾  𝒃: 𝐽𝐾 𝐽 = 5,461, 𝐾 = 6

𝐴: 32,766×32,766 = 1 billion elements!
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Challenges with ELM-FBPINNs

Solution: exploit sparsity

Challenge 2: Big matrix!  𝐴	𝒂∗ = 𝒃
𝐴: 𝐽𝐾	×	𝐽𝐾  𝒃: 𝐽𝐾 𝐽 = 5,461, 𝐾 = 6

𝐴: 32,766×32,766 = 1 billion elements!

Use sparse solver which only uses matvec products
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Time scheduling

Another solution: use time scheduling

𝐽 = 20, 𝐾 = 8
𝐴: 160×160

But with only 3 active models / step
𝐴: 24×24

Step 1 Step 2

Step 20
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Can physics-informed neural networks (PINNs) beat 
finite difference / finite element methods?

Workshop on Scalable Physics-Informed Neural Networks | Session 3 – Challenges with PINNs and Improving Their Performance
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Are PINNs becoming FEM?
Finite element method

𝐴: 𝐽𝐾	×	𝐽𝐾
(sparse & symmetric)

𝒃: 𝐽𝐾

ELM-FBPINN

𝑚
𝑑'𝑢
𝑑𝑡' + 𝜇

𝑑𝑢
𝑑𝑡 + 𝑘𝑢 = 𝑓

*𝑢 𝑡, 𝒂 =-
!
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%
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Are PINNs becoming FEM?
Finite element method

𝑚
𝑑'𝑢
𝑑𝑡' + 𝜇
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𝑎!𝜙!(𝑡)

e
-

/
𝜙+ 𝑡 𝑚

𝑑'

𝑑𝑡' + 𝜇
𝑑
𝑑𝑡 + 𝑘 *𝑢 𝑡, 𝒂 𝑑𝑡 = e
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𝒃: 𝐽
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*𝑢 𝑡, 𝒂 =-
!

"

𝑤! 𝑡 -
$

%

𝑎!$𝜙(𝑡, 𝜽!$)

𝐿 𝒂 =-
+

,

𝑚
𝑑'

𝑑𝑡' + 𝜇
𝑑
𝑑𝑡 + 𝑘 *𝑢 𝑡+ , 𝒂 − 𝑓(𝑡+)

'

= 𝑀𝒂 − 𝒉 '

⇒ 𝐴𝒂 − 𝒃 = 𝟎
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Workshop overview

Session 1: Intro to PINNs

• Lecture (1 hr): Introduction to SciML and PINNs
• Code-along (30 min): Training a PINN in PyTorch

Session 2: Accelerating PINNs with JAX

• Lecture (30 min): Introduction to JAX
• Practical (1 hr): Introduction to JAX and coding a PINN from scratch in JAX

Session 3: Accelerating PINNs with domain decomposition and NLA

• Lecture (30 min): Challenges with PINNs and improving their performance with 
domain decomposition and numerical linear algebra

• Practical (1 hr): Coding finite basis PINNs and extreme learning machine 
FBPINNs in JAX
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PINN (PyTorch) baseline

82 seconds

PINN (JAX)

11 seconds

PINN (JAX) + Domain 
Decomposition + Numerical 
Linear Algebra

0.002 seconds


