

Poll

Scalability challenges of PINNs

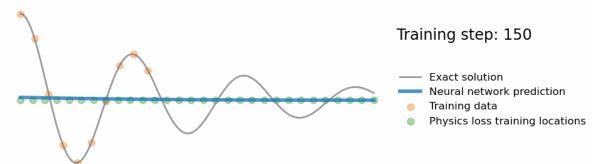
Advantages of PINNs

- Mesh-free
- Can solve forward and inverse problems, and seamlessly incorporate observational data
- Mostly unsupervised
- Can perform well for high-dimensional PDEs

Limitations of PINNs

- Computational cost often high (especially for forward-only problems)
- Can be hard to optimise
- Challenging to scale to highfrequency, multi-scale problems

(although many PINN improvements exist!)



PINNs for solving wave equation

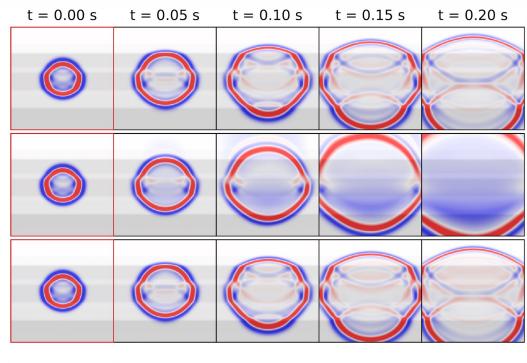
Ground truth FD simulation

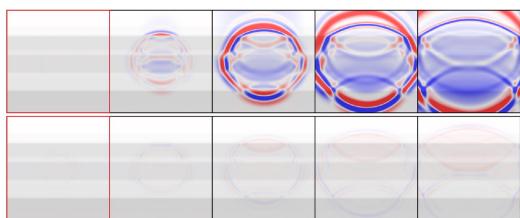
"Naïve" NN

PINN

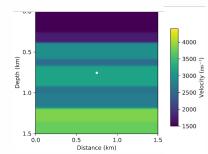
Difference (NN)

Difference (PINN)





Velocity model, c(x, y)



Moseley et al, Solving the wave equation with physics-informed deep learning, ArXiv (2020)

Mini-batch size $N_b = N_p = 500$ (random sampling)

Fully connected network with 10 layers, 1024 hidden units Softplus activation

Adam optimiser

Training time ~1 hr on a GPU!

PINNs for solving wave equation

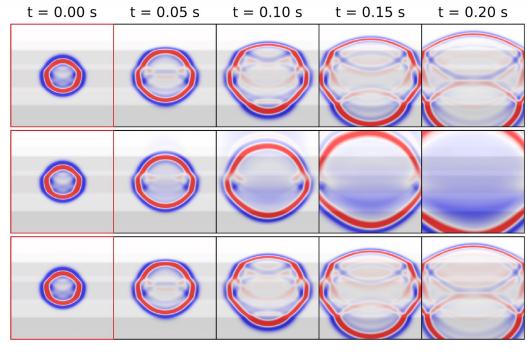
Ground truth FD simulation

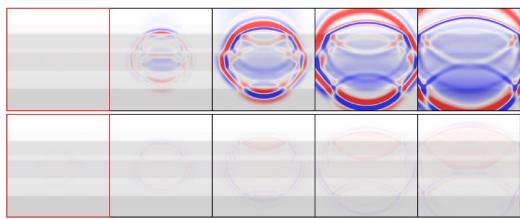
"Naïve" NN

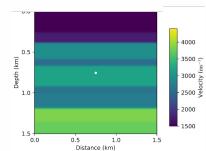
PINN

Difference (NN)

Difference (PINN)







Moseley et al, Solving the wave equation with physics-informed deep learning, ArXiv (2020)

Mini-batch size $N_b = N_p = 500$ (random sampling)

Fully connected network with 10 layers, 1024 hidden units
Softplus activation

Adam optimiser

PINNs need to be retrained for each new I/BC!

Can physics-informed neural networks (PINNs) beat finite difference / finite element methods?

Can physics-informed neural networks beat the finite element method?

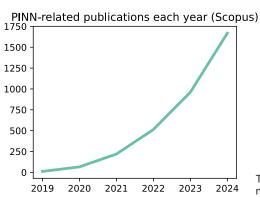
Carola-Bibiane Schönlieb

IMA Journal of Applied Mathematics, Volume 89, Issue 1, January 2024, Pages 143–174, https://doi.org/10.1093/imamat/hxae011

Published: 23 May 2024 Article history ▼

7. Discussion and conclusions

After having investigated each of the PDEs on its own, let us now discuss and draw conclusions from the results as a whole. Considering the solution time and accuracy, PINNs are not able to beat FEM in our study. In all the examples that we have studied, the FEM solutions were faster at the same or at a higher accuracy.



Solving inverse problems in physics by optimizing a discrete loss: Fast and accurate learning without neural networks 8

Author Notes PNAS Nexus, Volume 3, Issue 1, January 2024, pgae005,

https://doi.org/10.1093/pnasnexus/pgae005

Published: 11 January 2024 Article history ▼

Conclusion

We introduce the ODIL framework for solving inverse problems for PDEs by casting their discretization as an optimization problem and applying optimization techniques that are widely available in machine-learning software. The concept of casting the PDE as is closely related to the neural network formulations proposed by (15–17) and recently revived as PINNs. However, the fact that we use the discrete approximation of the equations allows for ODIL to be orders of magnitude more efficient in terms of computational cost and accuracy compared to the PINN for which complex flow problems "remain elusive" (71).

Workshop overview

Session 1: Intro to PINNs

- Lecture (1 hr): Introduction to SciML and PINNs
- Code-along (30 min): Training a PINN in PyTorch

Session 2: Accelerating PINNs with JAX

- Lecture (30 min): Introduction to JAX
- Practical (1 hr): Introduction to JAX and coding a PINN from scratch in JAX

Session 3: Accelerating PINNs with domain decomposition and NLA

- Lecture (30 min): Challenges with PINNs and improving their performance with domain decomposition and numerical linear algebra
- Practical (1 hr): Coding finite basis PINNs and extreme learning machine FBPINNs in JAX

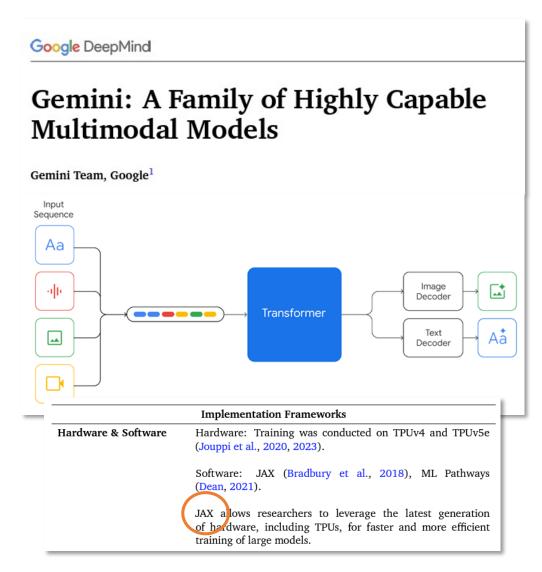
Introduction to JAX

What is JAX?

JAX = accelerated array computation + program transformation

.. Which is incredibly useful for high-performance numerical computing and large-scale (Sci)ML

JAX in ML

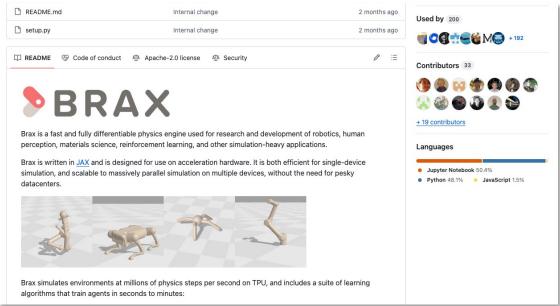


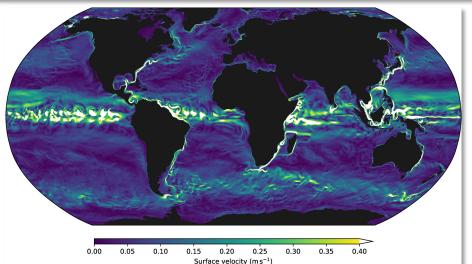


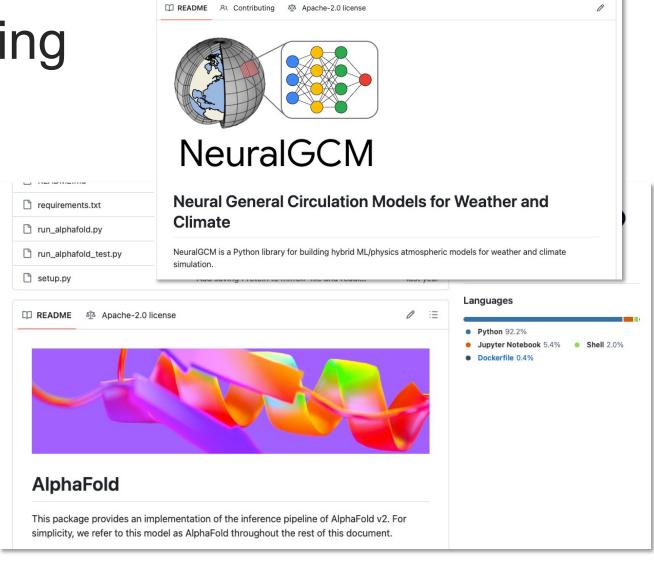
Google/ DeepMind, Gemini: A Family of Highly Capable Multimodal Models, ArXiv (2023)

Silver et al, Mastering the game of Go without human knowledge, Nature (2017)

JAX in scientific computing







← Ocean surface velocity, simulated in 24 hr using 16 NVIDIA A100 GPUs

Hafner et al, Fast, Cheap, and Turbulent - Global Ocean Modeling With GPU Acceleration in Python, Journal of Advances in Modeling Earth Systems (2021)

What is JAX?

JAX = accelerated array computation + program transformation

import jax.numpy *as* jnp

- JAX is NumPy on the CPU and GPU!
- JAX uses XLA (Accelerated Linear Algebra) to compile and run NumPy code, lightning fast

What is JAX?

JAX = accelerated array computation + program transformation

import jax.numpy as jnp

- JAX is NumPy on the CPU and GPU!
- JAX uses XLA (Accelerated Linear Algebra) to compile and run NumPy code, *lightning fast*

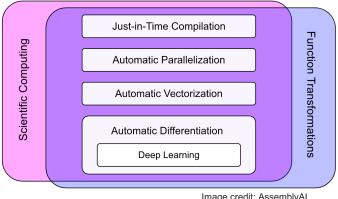


Image credit: AssemblyAI

 JAX can automatically differentiate and parallelise native Python and NumPy code

JAX = accelerated array computation

(10,000 x 10,000) (10,000 x 10,000) NumPy on CPU (Apple M1 Max): 7.22 s ± 109 ms (10,000 x 10,000) (10,000 x 10,000) JAX on GPU (NVIDIA RTX 3090): 56.9 ms ± 222 µs (**126x** faster)

Why is this operation faster on the GPU?

 $(10,000 \times 10,000) (10,000 \times 10,000)$ NumPy on CPU (Apple M1 Max): 7.22 s ± 109 ms (10,000 x 10,000) (10,000 x 10,000) JAX on GPU (NVIDIA RTX 3090): 56.9 ms ± 222 µs (**126x** faster)

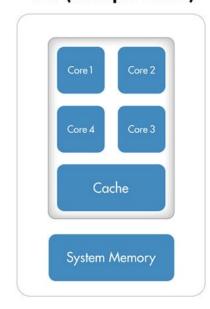
 $(10,000 \times 10,000) (10,000 \times 10,000)$

NumPy on CPU (Apple M1 Max):

 $7.22 s \pm 109 ms$

(10,000 x 10,000) (10,000 x 10,000) JAX on GPU (NVIDIA RTX 3090): 56.9 ms ± 222 µs (**126x** faster)

CPU (Multiple Cores)



GPU (Hundreds of Cores)

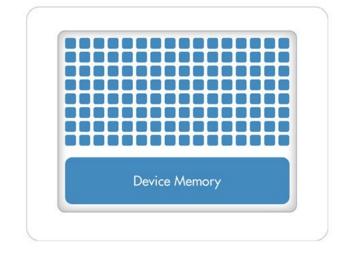


Image credit: MathWorks

Low latency Ideal for serial processing

High throughput Ideal for parallel processing

Wave simulation


```
import numpy as np
  assert velocity.shape == density.shape == (NX, NY)
  assert source_i.shape == (2,)
  pressure_present = np.zeros((NX, NY))
  pressure_past = np.zeros((NX, NY))
  kronecker_source = np.zeros((NX, NY))
  factor = 1e-3
  kappa = density*(velocity**2)
  density\_half\_x = np.pad(0.5 * (density[1:NX,:]+density[:NX-1,:]), [[0,1],[0,0]], mode="edge")
  density\_half\_y = np.pad(0.5 * (density[:,1:NY] + density[:,:NY-1]), [[0,0],[0,1]], mode="edge")
   def single_step(carry, it):
      value dpressure dx = np.pad((pressure present[1:NX,:]-pressure present[:NX-1,:]) / DELTAX, [[0,1],[0,0]], mode="constant", constant values=0.)
      value_dpressure_dy = np.pad((pressure_present[:,:NY-]-pressure_present[:,:NY-1]) / DELTAY, [[0,0],[0,1]], mode="constant", constant_values=0.)
      pressure_xx = value_dpressure_dx / density_half_x
      value\_dpressurexx\_dx = np.pad((pressure\_xx[1:NX,:]-pressure\_xx[:NX-1,:]) \ / \ DELTAX, \ [[1,0],[0,0]], \ mode="constant", \ constant\_values=0.)
      value_dpressureyy_dy = np.pad((pressure_yy[:,1:NY]-pressure_yy[:,:NY-1]) / DELTAY, [[0,0],[1,0]], mode="constant", constant_values=0.)
      dpressurexx_dx = value_dpressurexx_dx
      a = (np.pi**2)*f0*f0
      source term = factor * (1 - 2*a*(t-t0)**2)*np.exp(-a*(t-t0)**2)
                          + 2 * pressure present \
                          + DELTAT*DELTAT*(dpressurexx_dx+dpressureyy_dy)*kappa
      pressure_future += DELTAT*DELTAT*(4*np.pi*(velocity**2)*source_term*kronecker_source)# latest seismicCPML
      pressure past = pressure present
      return carry, wavefield
   wavefields = np.zeros((NSTEPS, NX, NY), dtype=float)
      wavefields[it] = w.copy()
```

Wave simulation


```
import numpy as np
  assert velocity.shape == density.shape == (NX, NY)
  assert source_i.shape == (2,)
  pressure_present = np.zeros((NX, NY))
  pressure_past = np.zeros((NX, NY))
  kronecker_source = np.zeros((NX, NY))
  kappa = density*(velocity**2)
  density\_half\_x = np.pad(0.5 * (density[1:NX,:]+density[:NX-1,:]), [[0,1],[0,0]], mode="edge")
  density\_half\_y = np.pad(0.5 * (density[:,1:NY] + density[:,:NY-1]), [[0,0],[0,1]], mode="edge")
   def single_step(carry, it):
       value_dpressure_dx = np.pad((pressure_present[1:NX,:]-pressure_present[:NX-1,:]) / DELTAX, [[0,1],[0,0]], mode="constant", constant_values=0.)
      value_dpressure_dy = np.pad((pressure_present[:,:NY]-pressure_present[:,:NY-1]) / DELTAY, [[0,0],[0,1]], mode="constant", constant_values=0.)
      pressure_xx = value_dpressure_dx / density_half_x
      value\_dpressurexx\_dx = np.pad((pressure\_xx[1:NX,:]-pressure\_xx[:NX-1,:]) / DELTAX, [[1,0],[0,0]], mode="constant", constant\_values=0.)
      value_dpressureyy_dy = np.pad((pressure_yy[:,1:NY]-pressure_yy[:,:NY-1]) / DELTAY, [[0,0],[1,0]], mode="constant", constant_values=0.)
      dpressurexx_dx = value_dpressurexx_dx
       dpressureyy_dy = value_dpressureyy_dy
      a = (np.pi**2)*f0*f0
      source term = factor * (1 - 2*a*(t-t0)**2)*np.exp(-a*(t-t0)**2)
                          + 2 * pressure present \
                          + DELTAT*DELTAT*(dpressurexx_dx+dpressureyy_dy)*kappa
      wavefield = pressure_future
      pressure past = pressure present
      pressure present = pressure future
      return carry, wavefield
   wavefields = np.zeros((NSTEPS, NX, NY), dtype=float)
   for it in range(NSTEPS):
      wavefields[it] = w.copy()
```

```
import jax.numpy as jnp
import jax
def forward(velocity, density, source_i, f0, NX, NY, NSTEPS, DELTAX, DELTAY, DELTAT):
   assert velocity.shape == density.shape == (NX, NY)
   assert source_i.shape == (2,)
   pressure_present = jnp.zeros((NX, NY))
   kronecker_source = jnp.zeros((NX, NY))
  kronecker_source = kronecker_source.at[source_i[0], source_i[1]].set(1.)
   t0 = 1.2 / f0
   factor = 1e-3
   kappa = density*(velocity**2)
   density\_half\_x = jnp.pad(0.5 * (density[1:NX,:]+density[:NX-1,:]), [[0,1],[0,0]], mode="edge")
   density_half_y = jnp.pad(0.5 * (density[:,1:NY]+density[:,:NY-1]), [[0,0],[0,1]], mode="edge")
  carry = pressure_past, pressure_present
   def single step(carry, it):
       value_dpressure_dx = jnp.pad((pressure_present[1:NX,:]-pressure_present[:NX-1,:]) / DELTAX, [[0,1],[0,0]], mode="constant", constant_values=0.)
       value_dpressure_dy = jnp.pad((pressure_present[:,1:NY]-pressure_present[:,:NY-1]) / DELTAY, [[0,0],[0,1]], mode="constant", constant_values=0.)
       pressure_yy = value_dpressure_dy / density_half_y
       value_dpressurexx_dx = jnp.pad((pressure_xx[1:NX,:]-pressure_xx[:NX-1,:]) / DELTAX, [[1,0],[0,0]], mode="constant", constant_values=0.)
       value\_dpressureyy\_dy = jnp.pad((pressure\_yy[:,1:NY]-pressure\_yy[:,:NY-1]) / DELTAY, [[0,0],[1,0]], mode="constant", constant\_values=0.)
       a = (jnp.pi**2)*f0*f0
       source_term = factor * (1 - 2*a*(t-t0)**2)*jnp.exp(-a*(t-t0)**2)
                           + 2 * pressure present \
                           + DELTAT*DELTAT*(dpressurexx_dx+dpressureyy_dy)*kappa
       pressure_future += DELTAT*DELTAT*(4*jnp.pi*(velocity**2)*source_term*kronecker_source)# latest seismicCPML
       pressure_past = pressure_present
       return carry, wavefield
   _, wavefields = jax.lax.scan(single_step, carry, jnp.arange(NSTEPS))
   return wavefields
```

```
import numpy as np
  assert velocity.shape == density.shape == (NX, NY)
  assert source_i.shape == (2,)
  pressure_present = np.zeros((NX, NY))
  pressure_past = np.zeros((NX, NY))
  kronecker_source = np.zeros((NX, NY))
  t0 = 1.2 / f0
  factor = 1e-3
  kappa = density*(velocity**2)
  density_half_x = np.pad(0.5 * (density[1:NX,:]+density[:NX-1,:]), [[0,1],[0,0]], mode="edge")
  density_half_y = np.pad(0.5 * (density[:,1:NY]+density[:,:NY-1]), [[0,0],[0,1]], mode="edge")
  def single_step(carry, it):
      pressure_past, pressure_present = carry
      value_dpressure_dx = np.pad((pressure_present[1:NX,:]-pressure_present[:NX-1,:]) / DELTAX, [[0,1],[0,0]], mode="constant", constant_values=0.)
      value_dpressure_dy = np.pad((pressure_present[:,1:NY]-pressure_present[:,:NY-1]) / DELTAY, [[0,0],[0,1]], mode="constant", constant_values=0.)
      pressure_xx = value_dpressure_dx / density_half_x
      value\_dpressurexx\_dx = np.pad((pressure\_xx[1:NX,:]-pressure\_xx[:NX-1,:]) / DELTAX, [[1,0],[0,0]], mode="constant", constant\_values=0.)
      value_dpressureyy_dy = np.pad((pressure_yy[:,1:NY]-pressure_yy[:,:NY-1]) / DELTAY, [[0,0],[1,0]], mode="constant", constant_values=0.)
      dpressurexx_dx = value_dpressurexx_dx
      dpressureyy_dy = value_dpressureyy_dy
      a = (np.pi**2)*f0*f0
      source term = factor * (1 - 2*a*(t-t0)**2)*np.exp(-a*(t-t0)**2)
                          + 2 * pressure present \
      pressure_future += DELTAT*DELTAT*(4*np.pi*(velocity**2)*source_term*kronecker_source)# latest seismicCPML
      wavefield = pressure future
      pressure past = pressure present
      pressure present = pressure future
      return carry, wavefield
  wavefields = np.zeros((NSTEPS, NX, NY), dtype=float)
   for it in range(NSTEPS):
      wavefields[it] = w.copy()
```

Wave simulation

NumPy on **CPU** (Apple M1 Max): $8.06 \text{ s} \pm 54.7 \text{ ms}$

JAX (jit compiled) on **CPU** (Apple M1 Max): 1.58 s ± 11.6 ms (**5x** faster)

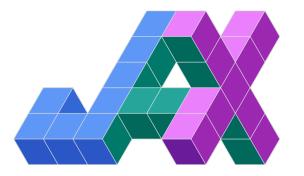
JAX (jit compiled) on **GPU** (NVIDIA RTX 3090): 65.5 ms \pm 30.2 μ s (123x faster)

Code along – Introduction to JAX

Follow along here:

github.com/benmoseley/ scalable-pinnsworkshop

What is JAX?



JAX = accelerated array computation + program transformation

- JAX is NumPy on the CPU and GPU!
- JAX uses XLA (Accelerated Linear Algebra) to compile and run NumPy code, *lightning fast*

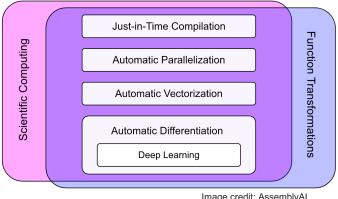


Image credit: AssemblyAI

 JAX can automatically differentiate and parallelise native Python and NumPy code

JAX = program transformation

```
import jax
import jax.numpy as jnp

def f(x):
    return x**2
```

```
import jax
import jax.numpy as jnp

def f(x):
    return x**2

dfdx = jax.grad(f)# this returns a python function!
```

```
import jax
import jax.numpy as jnp
def f(x):
    return x**2
dfdx = jax.grad(f)# this returns a python function!
x = jnp.array(10.)
print(x)
print(dfdx(x))
10.0
20.0
```

```
import jax
import jax.numpy as jnp
def f(x):
    return x**2
dfdx = jax.grad(f)# this returns a python function!
x = jnp.array(10.)
print(x)
print(dfdx(x))
10.0
20.0
```

Step 1: convert Python function into a simple intermediate language (jaxpr)

```
print(jax.make_jaxpr(f)(x))
---
{ lambda ; a:f32[]. let b:f32[] = integer_pow[y=2] a in (b,) }
```

```
import jax
import jax.numpy as jnp
def f(x):
    return x**2
dfdx = jax.grad(f)# this returns a python function!
x = jnp.array(10.)
print(x)
print(dfdx(x))
10.0
20.0
```

Step 1: convert Python function into a simple intermediate language (jaxpr)

```
print(jax.make_jaxpr(f)(x))
---
{ lambda ; a:f32[]. let b:f32[] = integer_pow[y=2] a in (b,) }
```

Step 2: apply transformation (e.g. return the corresponding gradient function)

```
print(jax.make_jaxpr(dfdx)(x))
---
{ lambda ; a:f32[]. let
    _:f32[] = integer_pow[y=2] a
    b:f32[] = integer_pow[y=1] a
    c:f32[] = mul 2.0 b
    d:f32[] = mul 1.0 c
    in (d,) }
```

```
import jax
import jax.numpy as jnp
def f(x):
    return x**2
dfdx = jax.grad(f)# this returns a python function!
x = jnp.array(10.)
print(x)
print(dfdx(x))
10.0
20.0
```

Program transformation =

Transform one **program** to another **program**

- Treats programs as data
- Aka meta-programming

Program transformations are composable

```
import jax
import jax.numpy as jnp
def f(x):
    return x**2
dfdx = jax.grad(f)# this returns a python function!
d2fdx2 = jax.grad(dfdx)# transformations are composable!
x = jnp.array(10.)
print(x)
print(d2fdx2(x))
10.0
2.0
```


We can **arbitrarily compose** program transformations in JAX!

This allows highly sophisticated workflows to be developed

Autodifferentiation in JAX

```
import jax
import jax.numpy as jnp
def f(x):
    return jnp.sum(x**2)
x = jnp.arange(5.)
g = jax.grad(f)# returns function which computes gradient
 = jax.jacfwd(f)# returns function which computes Jacobian
 = jax.jacrev(f)# returns function which computes Jacobian
h = jax.hessian(f)# returns function which computes Hessian
print(g(x))
print(h(x))
fval, vjp = jax.vjp(f, x)# returns function output and function which computes vjp at x
vjp_val = vjp(1.)
v = jnp.ones_like(x)
fval, jvp_val = jax.jvp(f, (x,), (v,)) # returns function output and <math>jvp at x
[0. 2. 4. 6. 8.]
[[2. 0. 0. 0. 0.]
[0. 2. 0. 0. 0.]
[0. 0. 2. 0. 0.]
[0. 0. 0. 2. 0.]
[0. 0. 0. 0. 2.]]
```

- JAX has many autodifferentiation capabilities
- all are based on compositions of vjp and jvp (i.e. reverse- and forward- mode autodiff)

Other function transformations

 $f(x) \rightarrow dfdx(x)$ is not the only function transformation we could make!

 What other function transformations can you imagine?

Automatic vectorisation

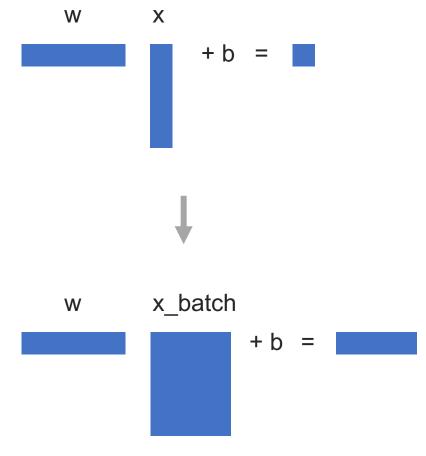
```
import jax
import jax.numpy as jnp

def f(w, b, x):
    y = jnp.dot(w, x) + b
    return y

x = jnp.array([1., 2.])
w = jnp.array([2., 4.])
b = jnp.array(1.)

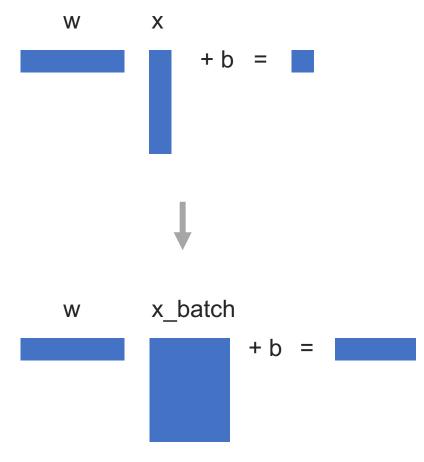
print(f(w, b, x))
```

- Vectorisation is another type of function transformation
 - = parallelise the function across many inputs (on a single CPU or GPU)



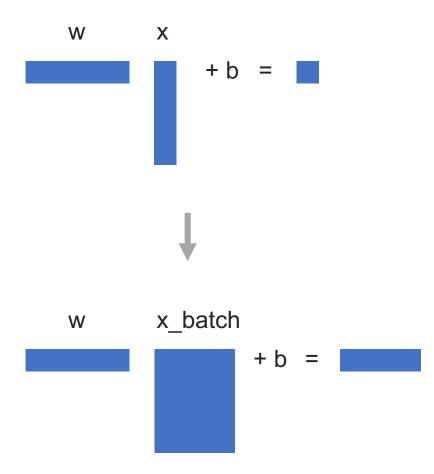
Automatic vectorisation

```
import jax
import jax.numpy as jnp
def f(w, b, x):
   y = jnp.dot(w, x) + b
    return y
x = jnp.array([1., 2.])
w = jnp.array([2., 4.])
b = jnp.array(1.)
print(f(w, b, x))
# vectorise function across first dimension of x
f_batch = jax.vmap(f, in_axes=(None, None, 0))
```



Automatic vectorisation

```
import jax
import jax.numpy as jnp
def f(w, b, x):
   y = jnp.dot(w, x) + b
    return y
x = jnp.array([1., 2.])
w = jnp.array([2., 4.])
b = jnp.array(1.)
print(f(w, b, x))
# vectorise function across first dimension of x
f_batch = jax.vmap(f, in_axes=(None, None, 0))
x_batch = jnp.array([[1., 2.],
                     [3., 4.],
                     [5., 6.]])
print(f_batch(w, b, x_batch))
11.0
[11. 23. 35.]
```



Automatic vectorisation

```
lambda ; a:f32[2] b:f32[] c:f32[2]. let
import jax
                                                                     d:f32[] = dot_general[
import jax.numpy as jnp
                                                                      dimension_numbers=(([0], [0]), ([], []))
                                                                      preferred_element_type=float32
def f(w, b, x): _____
                                                                     e:f32[] = convert_element_type[new_dtype=float32 weak_type=False] b
    y = jnp.dot(w, x) + b
                                                                     f:f32[] = add d e
                                                                    in (f,) }
    return y
x = jnp.array([1., 2.])
w = jnp.array([2., 4.])
b = jnp.array(1.)
print(f(w, b, x))
                                                                   lambda ; a:f32[2] b:f32[] c:f32[3,2]. let
# vectorise function across first dimension of x
                                                                     d:f32[3] = dot_general[
f batch = jax.vmap(f, in axes=(None, None, 0))
                                                                      dimension_numbers=(([0], [1]), ([], []))
                                                                      preferred_element_type=float32
x_batch = jnp.array([[1., 2.],
                                                                     e:f32[] = convert_element_type[new_dtype=float32 weak_type=False] b
                         [3., 4.],
                                                                     f:f32[3] = add d e
                                                                    in (f,) }
                         [5., 6.]])
print(f_batch(w, b, x_batch))
                                                                                                           + b
11.0
[11. 23. 35.]
```

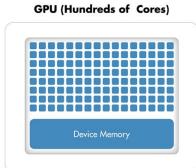
Automatic vectorisation

```
import jax
import jax.numpy as jnp
def f(w, b, x): _____
   y = jnp.dot(w, x) + b
    return y
x = jnp.array([1., 2.])
w = jnp.array([2., 4.])
b = jnp.array(1.)
print(f(w, b, x))
# vectorise function across first dimension of x
f batch = jax.vmap(f, in axes=(None, None, 0))
x_batch = jnp.array([[1., 2.],
                     [3., 4.],
                     [5., 6.]])
print(f_batch(w, b, x_batch))
11.0
[11. 23. 35.]
```

```
{ lambda; a:f32[2] b:f32[] c:f32[2]. let
    d:f32[] = dot_general[
        dimension_numbers=(([0], [0]), ([], []))
        preferred_element_type=float32
        ] a c
        e:f32[] = convert_element_type[new_dtype=float32 weak_type=False] b
        f:f32[] = add d e
        in (f,) }
    + b =
```

```
{ lambda; a:f32[2] b:f32[] c:f32[3,2]. let
    d:f32[3] = dot_general[
        dimension_numbers=(([0], [1]), ([], []))
        preferred_element_type=float32
        ] a c
        e:f32[] = convert_element_type[new_dtype=float32 weak_type=False] b
        f:f32[3] = add d e
    in (f,) }
```

+ b



Much faster than a Python for loop!

```
import jax

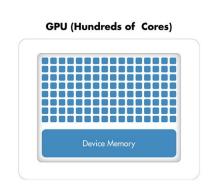
def f(x):
    return x + x*x + x*x*x
```

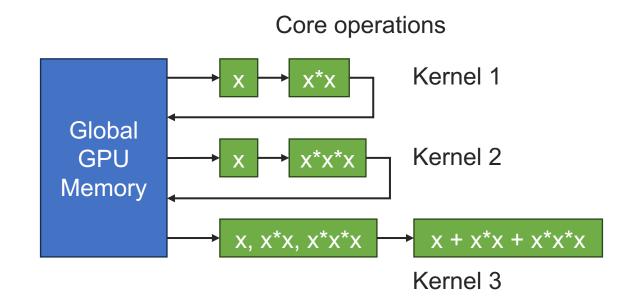
- Compilation is another type of function transformation
 - = rewrite your code to be faster

```
import jax

def f(x):
    return x + x*x + x*x*x
```

- Compilation is another type of function transformation
 - = rewrite your code to be faster



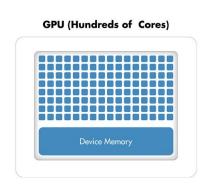


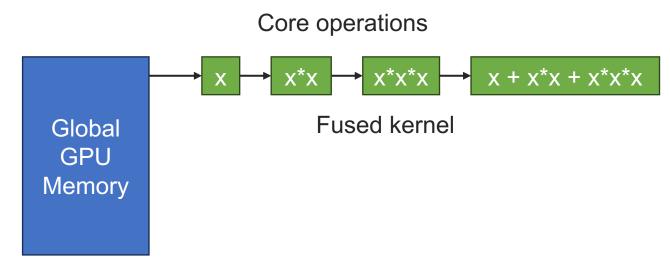
```
import jax

def f(x):
    return x + x*x + x*x*x

jit_f = jax.jit(f)# compile function
```

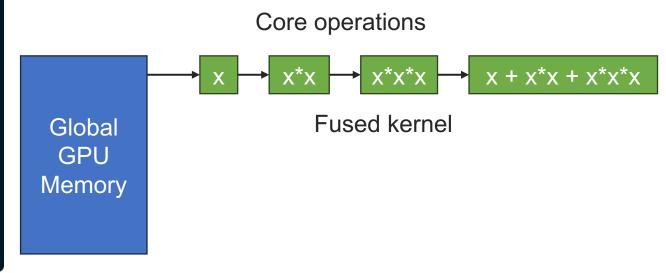
- Compilation is another type of function transformation
 - = rewrite your code to be faster





```
import jax
def f(x):
    return x + x*x + x*x*x
jit_f = jax.jit(f)# compile function
key = jax.random.key(0)
x = jax.random.normal(key, (1000, 1000))
%timeit f(x).block_until_ready()
%timeit jit_f(x).block_until_ready()
870 \mu s \pm 19.7 \mu s per loop
117 \mus \pm 253 ns per loop
```

- Compilation is another type of function transformation
 - = rewrite your code to be faster



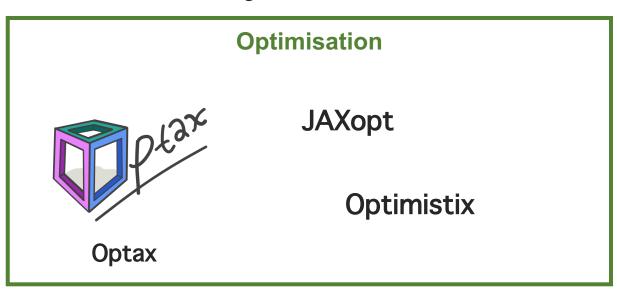
8x faster!

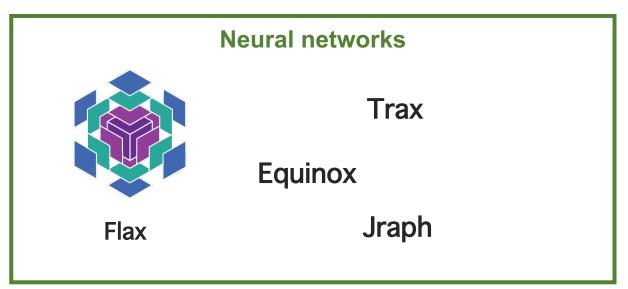
```
import jax
def f(x):
    return x + x*x + x*x*x
jit_f = jax.jit(f)# compile function
key = jax.random.key(0)
x = jax.random.normal(key, (1000, 1000))
%timeit f(x).block_until_ready()
%timeit jit_f(x).block_until_ready()
870 \mu s \pm 19.7 \mu s per loop
117 \mus \pm 253 ns per loop
```

- Compilation is another type of function transformation
 - = rewrite your code to be faster
- XLA (accelerated linear algebra) is used for CPU / GPU compilation
- Function is compiled first time it is called (i.e. "just-in-time")
 - = upfront cost!

8x faster!

JAX ecosystem





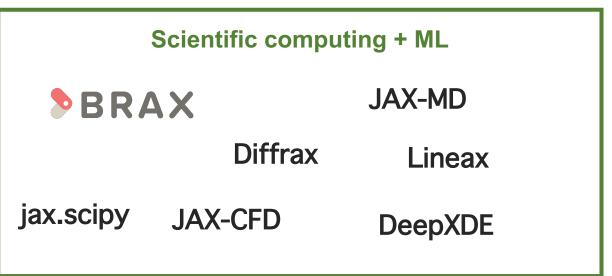
ML

MaxText (LLMs)

RLax

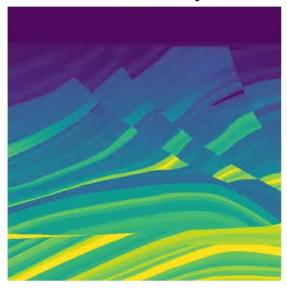
EasyLM

Scenic NumPyro

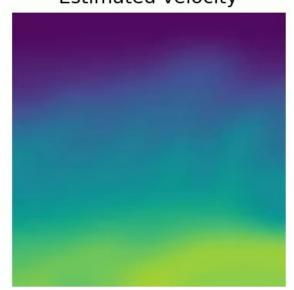


Optimisation with Optax

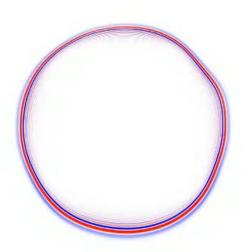
True velocity



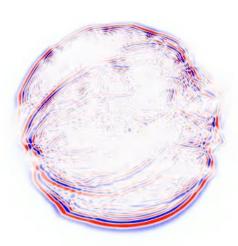
Estimated velocity



Estimated wavefield



True wavefield



```
def loss(velocity, true_wavefield):
    estimated_wavefield = forward(velocity)
    return jnp.mean((estimated_wavefield-true_wavefield)**2)

# Initialize optimizer.

optimizer = optax.adam(learning_rate=le-1)
opt_state = optimizer.init(velocity)

# A simple gradient descent loop.
for _ in range(10000):
    grads = jax.grad(loss)(velocity, true_wavefield)
    updates, opt_state = optimizer.update(grads, opt_state)
    velocity = optax.apply_updates(velocity, updates)
```

JAX - the sharp bits

- Nure functions: JAX transforms are designed to work on pure functions
- **Static shapes**: JAX transforms require all shapes to be known in advance
- **Out-of-place updates**: JAX only allows out-of-place array updates
- **Random numbers**: JAX requires us to handle RNG explicitly

https://docs.jax.dev/en/latest/notebooks/Common Gotchas in JAX.html

Workshop overview

Session 1: Intro to PINNs

- Lecture (1 hr): Introduction to SciML and PINNs
- Code-along (30 min): Training a PINN in PyTorch

Session 2: Accelerating PINNs with JAX

- Lecture (30 min): Introduction to JAX
- Practical (1 hr): Introduction to JAX and coding a PINN from scratch in JAX

Session 3: Accelerating PINNs with domain decomposition and NLA

- Lecture (30 min): Challenges with PINNs and improving their performance with domain decomposition and numerical linear algebra
- Practical (1 hr): Coding finite basis PINNs and extreme learning machine FBPINNs in JAX

