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PINN (PyTorch) baseline

82 seconds

Problem: damped harmonic oscillator
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PINN (PyTorch) baseline

82 seconds

PINN (JAX)

11 seconds

PINN (JAX) + Domain 
Decomposition + Numerical 
Linear Algebra

0.002 seconds
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Workshop overview

Session 1: Intro to PINNs

• Lecture (1 hr): Introduction to SciML and PINNs
• Code-along (30 min): Training a PINN in PyTorch

Session 2: Accelerating PINNs with JAX

• Lecture (30 min): Introduction to JAX
• Practical (1 hr): Introduction to JAX and coding a PINN from scratch in JAX

Session 3: Accelerating PINNs with domain decomposition and NLA

• Lecture (30 min): Challenges with PINNs and improving their performance with 
domain decomposition and numerical linear algebra

• Practical (1 hr): Coding finite basis PINNs and extreme learning machine 
FBPINNs in JAX
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AI for climate science

𝑡 − 3   𝑡 − 2	 𝑡 − 1 𝑡

Pathak et al, FourCastNet: A Global Data-driven High-resolution 
Weather Model using Adaptive Fourier Neural Operators, ArXiv (2022)
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AI for chemistry
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AI for fusion

Variable Configuration Tokamak (TCV) in Lausanne, Switzerland
Source: DeepMind & SPC/EPFL
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PDEs are the building blocks of science

Source: Kondo and Miura, Science (2010)

Source: The Event Horizon Telescope (2019)

Source: NOAA

Source: Wikipedia
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PDEs are the building blocks of science

Reaction-diffusion equation
Source: Kondo and Miura, Science (2010)

Einstein field equations

Source: The Event Horizon Telescope (2019)

Source: NOAA

Navier-Stokes equations

Schrödinger equation

Source: Wikipedia
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How can we solve PDEs?

Mesh for finite element method
Source: COMSOL

Angel et al, Predicting SLS Launch Environment using a Novel Multiphase 
Formulation (NASA) SC22 (2022) Source: NASA

Required: 500 million grid cells, ran for several 
weeks on 8,000 cores, generating 400 TB (!)

Finite difference methods, finite element 
methods, finite volume methods, spectral 
methods, domain decomposition, mesh-free 
methods, …

Typically, computational cost is the main 
challenge
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Grand challenges in science
Data (in terabytes) recorded on tapes at CERN month-by-month (2010–2018) (Source: CERN)

~5,000 exoplanets discovered to date

Hirano et al, An Earth-sized Planet around an M5 Dwarf Star at 22 pc, The 
Astronomical Journal (2023)

Source: Nextstrain
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Challenges of deep learning

Brown et al, Language Models are Few-Shot Learners, NeurIPS (2020)
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Challenges of deep learning

Kim et al, Textual Explanations for Self-Driving Vehicles, ECCV (2018)
He et al, Deep Residual 
Learning for Image Recognition, 
CVPR (2015)

Workshop on Scalable Physics-Informed Neural Networks | Session 1 - Introduction to SciML and PINNs



18

The challenge of generalisation

laboratory coat 40%
jeweler's loupe 8%
English foxhound 6%
soccer ball 4%
neck brace 3%

Labrador retriever 52%
Chesapeake Bay retriever 7%
golden retriever 5%
Canis dingo 4%
bloodhound, sleuthhound 3%
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The challenge of reasoning

Source: DALL·E 3
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Naïve application of deep learning

Moseley, B., Nissen-Meyer, T., & Markham, A. (2020). Deep learning for fast simulation of seismic waves in complex media. Solid Earth

Within training distribution

Outside training distribution
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What is Scientific Machine 
Learning (SciML)?
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What is scientific machine learning?

Black box 
model

Inputs to scientific workflow

Predictions

Workshop on Scalable Physics-Informed Neural Networks | Session 1 - Introduction to SciML and PINNs

Training 
data
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What is scientific machine learning?

Black box 
model

Inputs to scientific workflow

Predictions

Suffers from:

• Lack of interpretability

• Requires lots of training data

• Poor generalisation

Workshop on Scalable Physics-Informed Neural Networks | Session 1 - Introduction to SciML and PINNs

Training 
data
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What is scientific machine learning?
Inputs to scientific workflow

Predictions

Inputs to scientific workflow

Predictions
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Training 
data

Training 
data
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What is scientific machine learning?
Inputs to scientific workflow

Predictions

Machine learning Scientific 
understanding

SciML

more powerful, robust, 
interpretable models 
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Scientific machine learning

Machine 
learning

Scientific 
understanding

SciML

more powerful, 
robust, interpretable 

models 
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Source: Scopus keyword search (Oct 2025)

A rapidly growing field
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Interdisciplinarity drives SciML

Domain 
knowledge

Machine 
learning

High 
performance 
computing

Applied math

Collaboration
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How can we incorporate scientific 
principles into ML?
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Ways to incorporate scientific principles into machine learning

ArchitectureLoss function Hybrid approaches

Data 
loss

Physics 
loss

Example: 
Physics-informed neural networks
(add governing equations to loss 

function)

Example: 
Encoding symmetries / conservation laws 

(e.g. energy conservation, rotational 
invariance)

Example:
Neural differential equations

(incorporating neural networks into PDE 
models)
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A plethora of SciML techniques

Source: B Moseley, Physics-informed machine learning: 
from concepts to real-world applications, PhD thesis, 2022

Traditional 
workflowsNaive ML

Constraining physical quantities
Encoding conservation laws
Auxiliary tasks

Encoding governing equations

Architecture

Loss function

Hybrid approachesAdding physical variables
Encoding symmetries

Physics-inspired NAS
ML inspired by Koopman theory
Physically constrained GPs

Residual modelling
Differentiable physics

Neural differential equations
In-the-loop methods
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A plethora of SciML techniques

Traditional 
workflowsNaive ML

Constraining physical quantities
Encoding conservation laws
Auxiliary tasks

Encoding governing equations

Architecture

Loss function

Hybrid approachesAdding physical variables
Encoding symmetries

Physics-inspired NAS
ML inspired by Koopman theory
Physically constrained GPs

Residual modelling
Differentiable physics

Neural differential equations
In-the-loop methods

Source: B Moseley, Physics-informed machine learning: 
from concepts to real-world applications, PhD thesis, 2022

Fully learned

Fully data-driven

No physics constraints

No learning

No data required

Hard physics 
constraints
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Ways to incorporate scientific principles into machine learning

ArchitectureLoss function Hybrid approaches

Data 
loss

Physics 
loss

Physics-informed neural networks Example: 
Encoding symmetries / conservation laws 

(e.g. energy conservation, rotational 
invariance)

Example:
Neural differential equations

(incorporating neural networks into PDE 
models)
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So, what is a physics-informed 
neural network?
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What is a physics-informed neural network?
Problem: damped harmonic 
oscillator

Raissi et al, Physics-informed neural networks: A deep learning framework for solving forward 
and inverse problems involving nonlinear partial differential equations, JCP (2018)
Lagaris et al, Artificial neural networks for solving ordinary and partial differential equations, IEEE 
(1998)

𝑚
𝑑'𝑢
𝑑𝑡' + 𝜇

𝑑𝑢
𝑑𝑡 + 𝑘𝑢 = 0

Initial conditions:

𝑢 𝑡 = 0 = 1
𝑢( 𝑡 = 0 = 0

𝑢 =	displacement
𝑚 =	mass of oscillator
𝜇 =	coefficient of friction
𝑘 =	spring constant
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What is a physics-informed neural network?
Problem: damped harmonic 
oscillator

Raissi et al, Physics-informed neural networks: A deep learning framework for solving forward 
and inverse problems involving nonlinear partial differential equations, JCP (2018)
Lagaris et al, Artificial neural networks for solving ordinary and partial differential equations, IEEE 
(1998)

𝑡 𝑁𝑁 𝑡, 𝜽 ≈ 𝑢(𝑡)

𝑚
𝑑'𝑢
𝑑𝑡' + 𝜇

𝑑𝑢
𝑑𝑡 + 𝑘𝑢 = 0

Key idea: use a neural 
network to directly 
approximate the solution
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What is a physics-informed neural network?
Problem: damped harmonic 
oscillator

Raissi et al, Physics-informed neural networks: A deep learning framework for solving forward 
and inverse problems involving nonlinear partial differential equations, JCP (2018)
Lagaris et al, Artificial neural networks for solving ordinary and partial differential equations, IEEE 
(1998)

𝐿 𝜃 = 𝜆) 5𝑢 𝑡 = 0, 𝜽 − 1 '

+	𝜆'
𝑑5𝑢
𝑑𝑡

𝑡 = 0, 𝜽 − 0
'

+
1
𝑁*

7
+

,!

𝑚
𝑑'

𝑑𝑡'
+ 𝜇

𝑑
𝑑𝑡
+ 𝑘 5𝑢 𝑡+, 𝜽

'

Physics loss
(aka PDE residual)

Boundary loss

𝑡 𝑁𝑁 𝑡, 𝜽 ≈ 𝑢(𝑡)

𝑚
𝑑'𝑢
𝑑𝑡' + 𝜇

𝑑𝑢
𝑑𝑡 + 𝑘𝑢 = 0
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What is a physics-informed neural network?
Problem: damped harmonic 
oscillator

Raissi et al, Physics-informed neural networks: A deep learning framework for solving forward 
and inverse problems involving nonlinear partial differential equations, JCP (2018)
Lagaris et al, Artificial neural networks for solving ordinary and partial differential equations, IEEE 
(1998)

𝐿 𝜃 = 𝜆) 5𝑢 𝑡 = 0, 𝜽 − 1 '

+	𝜆'
𝑑5𝑢
𝑑𝑡

𝑡 = 0, 𝜽 − 0
'

+
1
𝑁*

7
+

,!

𝑚
𝑑'

𝑑𝑡'
+ 𝜇

𝑑
𝑑𝑡
+ 𝑘 5𝑢 𝑡+, 𝜽

'

Physics loss
(aka PDE residual)

Boundary loss

𝑡 𝑁𝑁 𝑡, 𝜽 ≈ 𝑢(𝑡)

𝑚
𝑑'𝑢
𝑑𝑡' + 𝜇

𝑑𝑢
𝑑𝑡 + 𝑘𝑢 = 0
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What is a physics-informed neural network?

Raissi et al, Physics-informed neural networks: A deep learning framework for solving forward 
and inverse problems involving nonlinear partial differential equations, JCP (2018)
Lagaris et al, Artificial neural networks for solving ordinary and partial differential equations, IEEE 
(1998)

𝐿 𝜃 = 𝜆) 5𝑢 𝑡 = 0, 𝜽 − 1 '

+	𝜆'
𝑑5𝑢
𝑑𝑡

𝑡 = 0, 𝜽 − 0
'

+
1
𝑁*

7
+

,!

𝑚
𝑑'

𝑑𝑡'
+ 𝜇

𝑑
𝑑𝑡
+ 𝑘 5𝑢 𝑡+, 𝜽

'

Physics loss
(aka PDE residual)

Boundary loss
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• 𝑡+ +-)
,!  are known as collocation points, 

which are sampled throughout the domain

• 𝜆), 𝜆' are scalar hyperparameters which 
balance the contribution of each loss term
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What is a physics-informed neural network?

𝐿 𝜃 = 𝜆) 5𝑢 𝑡 = 0, 𝜽 − 1 '

+	𝜆'
𝑑5𝑢
𝑑𝑡

𝑡 = 0, 𝜽 − 0
'

+
1
𝑁*

7
+

,!

𝑚
𝑑'

𝑑𝑡'
+ 𝜇

𝑑
𝑑𝑡
+ 𝑘 5𝑢 𝑡+, 𝜽

'

Physics loss
(aka PDE residual)

Boundary loss
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Training loop:

1. Sample boundary/ physics training points
2. Compute network outputs
3. Compute 1st and 2nd order gradient of 

network output with respect to network 
input

4. Compute loss
5. Compute gradient of loss function with 

respect to network parameters
6. Take gradient descent step

How can we compute the gradients (e.g. ./0.(  and 
.1
.2

) in steps 3 and 5?
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What is a physics-informed neural network?

𝐿 𝜃 = 𝜆) 5𝑢 𝑡 = 0, 𝜽 − 1 '

+	𝜆'
𝑑5𝑢
𝑑𝑡

𝑡 = 0, 𝜽 − 0
'

+
1
𝑁*

7
+

,!

𝑚
𝑑'

𝑑𝑡'
+ 𝜇

𝑑
𝑑𝑡
+ 𝑘 5𝑢 𝑡+, 𝜽

'

Physics loss
(aka PDE residual)

Boundary loss
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Training loop:

1. Sample boundary/ physics training points
2. Compute network outputs
3. Compute 1st and 2nd order gradient of 

network output with respect to network 
input

4. Compute loss
5. Compute gradient of loss function with 

respect to network parameters
6. Take gradient descent step

How can we compute the gradients (e.g. ./0.(  and 
.1
.2

) in steps 3 and 5?

We can use autograd!
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PINNs for solving viscous Burgers’ equation

Raissi et al, Physics-informed neural networks: A deep learning framework for 
solving forward and inverse problems involving nonlinear partial differential 
equations, JCP (2018)

𝐿3 𝜽 =
𝜆)
𝑁3)

7
4

,"#

5𝑢 𝑥4, 0, 𝜽 + sin(𝜋𝑥4)
'

+
𝜆'
𝑁3'

7
5

,"$

5𝑢 −1, 𝑡5, 𝜽 − 0 '

+
𝜆6
𝑁36

7
7

,"%

5𝑢 +1, 𝑡7, 𝜽 − 0 '

𝐿* 𝜽 =
1
𝑁*

7
+

,!
𝜕5𝑢
𝜕𝑡
+ 5𝑢

𝜕5𝑢
𝜕𝑥

− 𝜈
𝜕' 5𝑢
𝜕𝑥'

𝑥+, 𝑡+, 𝜽
'
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PINNs for solving viscous Burgers’ equation

Raissi et al, Physics-informed neural networks: A deep learning framework for 
solving forward and inverse problems involving nonlinear partial differential 
equations, JCP (2018)

𝐿3 𝜽 =
𝜆)
𝑁3)

7
4

,"#

5𝑢 𝑥4, 0, 𝜽 + sin(𝜋𝑥4)
'

+
𝜆'
𝑁3'

7
5

,"$

5𝑢 −1, 𝑡5, 𝜽 − 0 '

+
𝜆6
𝑁36

7
7

,"%

5𝑢 +1, 𝑡7, 𝜽 − 0 '

𝐿* 𝜽 =
1
𝑁*

7
+

,!
𝜕5𝑢
𝜕𝑡
+ 5𝑢

𝜕5𝑢
𝜕𝑥

− 𝜈
𝜕' 5𝑢
𝜕𝑥'

𝑥+, 𝑡+, 𝜽
'

𝜈 = 0.01/𝜋
𝑁* = 10,000 (Latin hypercube sampling)
𝑁3) + 𝑁3' + 𝑁36 = 100
Fully connected network with 9 layers, 20 hidden units (3021 
free parameters)
Tanh activation function
L-BFGS optimiser
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PINNs – an entire research field

TITLE-ABS-KEY ( "physics-informed 
neural network"  OR  "physics informed 
neural network" ) 
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Key scientific tasks

𝑏 = 𝐹(𝑎)

𝑏 = 𝐹(𝑎)

𝑏 = 𝐹(𝑎)

𝑎 = set of input conditions

𝐹 = physical model of the system 
(usually a PDE)

𝑏 = resulting properties given 𝐹 and 𝑎 

PINNs can be used to solve forward, 
inverse and equation discovery 
problems related to PDEs

Workshop on Scalable Physics-Informed Neural Networks | Session 1 - Introduction to SciML and PINNs
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PINNs for solving wave equation

𝑦 𝑢

𝑡

𝑥

Moseley et al, Solving the wave equation with physics-
informed deep learning, ArXiv (2020)

𝐿3 𝜽 =
𝜆
𝑁3

7
4

,"

5𝑢 𝑥4, 𝑦4, 𝑡4, 𝜽 − 𝑢89 𝑥4, 𝑦4, 𝑡4
'

𝐿* 𝜽 =
1
𝑁*

7
+

,!

∇' −
1

𝑐 𝑥+ '
𝜕'

𝜕𝑡' 5𝑢 𝑥+, 𝑦+, 𝑡+, 𝜽
'

Boundary data from FD simulation (first 0.02 seconds)

Velocity model, 𝑐(𝑥, 𝑦) 

Ground truth FD 
simulation

Physics loss training points randomly sampled over 
entire 𝑥-𝑦-𝑡 domain (up to 0.2 seconds)
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PINNs for solving wave equation
Velocity model, 𝑐(𝑥, 𝑦) 

PINN

“Naïve” NN

Ground truth FD

Difference (NN)

Difference (PINN)

Moseley et al, Solving the wave equation with physics-
informed deep learning, ArXiv (2020)

Mini-batch size 𝑁3 = 𝑁* = 500 (random 
sampling)
Fully connected network with 10 layers, 
1024 hidden units
Softplus activation
Adam optimiser

Ground truth FD 
simulation
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PINNs for inverse problems
Shukla et al, Physics-Informed Neural Network for Ultrasound 
Nondestructive Quantification of Surface Breaking Cracks, 
Journal of Nondestructive Evaluation (2020)

Treat velocity model as another neural 
network, and simultaneously learn it

𝑥! 𝑢
𝑡

𝑥"
𝑥! 𝑐
𝑥"

𝜃 𝝓

𝐿. 𝜽 =
𝜆
𝑁3

7
4

,"

𝑁𝑁 𝑥4, 𝑦4, 𝑡4, 𝜽 − 𝑢.:(: 𝑥4, 𝑦4, 𝑡4
'

𝐿* 𝜽,𝝓 =
1
𝑁*

7
+

,!

∇' −
1

𝑐 𝑥+, 𝝓 '
𝜕'

𝜕𝑡' 𝑁𝑁 𝑥+, 𝑦+, 𝑡+, 𝜽
'
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PINNs for inverse problems
Shukla et al, Physics-Informed Neural Network for Ultrasound 
Nondestructive Quantification of Surface Breaking Cracks, 
Journal of Nondestructive Evaluation (2020)

Treat velocity model as another neural 
network, and simultaneously learn it

𝐿. 𝜽 =
𝜆
𝑁3

7
4

,"

𝑁𝑁 𝑥4, 𝑦4, 𝑡4, 𝜽 − 𝑢.:(: 𝑥4, 𝑦4, 𝑡4
'

𝐿* 𝜽,𝝓 =
1
𝑁*

7
+

,!

∇' −
1

𝑐 𝑥+, 𝝓 '
𝜕'

𝜕𝑡' 𝑁𝑁 𝑥+, 𝑦+, 𝑡+, 𝜽
'
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PINNs for equation discovery

• Trains by alternating between updating Λ and 𝜃

Chen et al, Physics-informed learning of governing equations from scarce 
data, Nature communications (2021)
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PINNs for equation discovery

• PINN “discovering” Burgers’ equation

• By combining datasets sampled under three 
different I/BCs with 10% noise

Chen et al, Physics-informed learning of governing 
equations from scarce data, Nature communications 
(2021)

Workshop on Scalable Physics-Informed Neural Networks | Session 1 - Introduction to SciML and PINNs



52

Code along – Training a PINN in PyTorch

Follow along here:

github.com/benmoseley/
scalable-pinns-
workshop
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