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Can physics-informed neural networks beat the
finite element method? 3

Tamara G Grossmann &, Urszula Julia Komorowska, Jonas Latz,
Carola-Bibiane Schonlieb

IMA Journal of Applied Mathematics, Volume 89, Issue 1, January 2024, Pages 143-174,
https://doi.org/10.1093/imamat/hxae011

7. Discussion and conclusions

After having investigated each of the PDEs on its own, let us now discuss and draw
conclusions from the results as a whole. Considering the solution time and accuracy,

PINNS are not able to beat FEM in our study. In all the examples that we have studied,

the FEM solutions were faster at the same or at a higher accuracy.

Solving inverse problems in physics by optimizing a
discrete loss: Fast and accurate learning without
neural networks 3

Petr Karnakov, Sergey Litvinov, Petros Koumoutsakos ™ Author Notes

PNAS Nexus, Volume 3, Issue 1, January 2024, pgae005,
https://doi.org/10.1093/pnasnexus/pgae005

Conclusion

We introduce the ODIL framework for solving inverse problems for PDEs by casting
their discretization as an optimization problem and applying optimization techniques
that are widely available in machine-learning software. The concept of casting the PDE
as is closely related to the neural network formulations proposed by (15-17) and
recently revived as PINNs. However, the fact that we use the discrete approximation of

the equations allows for ODIL to be orders of magnitude more efficient in terms of

computational cost and accuracy compared to the PINN for which complex flow

problems “remain elusive” (71).
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Workshop overview

Session 1: Intro to PINNs

» Lecture (1 hr): Introduction to SciML and PINNs
* Code-along (30 min): Training a PINN in PyTorch

Session 2: Accelerating PINNs with JAX

» Lecture (30 min): Introduction to JAX
» Practical (1 hr): Introduction to JAX and coding a PINN from scratch in JAX

Session 3: Accelerating PINNs with domain decomposition and NLA

» Lecture (30 min): Challenges with PINNs and improving their performance with
domain decomposition and numerical linear algebra

» Practical (1 hr): Coding finite basis PINNs and extreme learning machine
FBPINNs in JAX
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Al for climate science
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Al for chemistry
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® Computational prediction

nature

Explore content v  About the journal v  Publish withus v

nature > articles > article

Article | Open Access | Published: 15 July 2021

Highly accurate protein structure prediction with
AlphaFold

Kathryn Tunyasuvunakool, Russ Bates, Augustin Zidek, Anna Potapenko, Alex Bridgland, Clemens

Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-Paredes, Stanislav

Zielinski, ... Demis Hassabis + Show authors

Nature 596, 583-589 (2021) | Cite this article
958k Accesses | 5511 Citations | 3408 Altmetric | Metrics

Abstract

Proteins are essential to life, and understanding their structure can facilitate a mechanistic
understanding of their function. Through an enormous experimental effort}224, the
structures of around 100,000 unique proteins have been determined?, but this represents a
small fraction of the billions of known protein sequences®Z. Structural coverage is
bottlenecked by the months to years of painstaking effort required to determine a single

protein structure. Accurate computational approaches are needed to address this gap and to
enable large-scale structural bioinformatics. Predicting the three-dimensional structure that
aprotein will adopt based solely on its amino acid sequence—the structure prediction
component of the ‘protein folding problem’—has been an important open research problem
for more than 50 years?. Despite recent progress'>1112131% existing methods fall far short of
atomic accuracy, especially when no homologous structure is available. Here we provide the
first computational method that can regularly predict protein structures with atomic
accuracy even in cases in which no similar structure is known. We validated an entirely
redesigned version of our neural network-based model, AlphaFold, in the challenging 14th
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Magnetic control of tokamak plasmas through deep
reinforcement learning

Jonas Degrave, Federico Felici &, Jonas Buchli &, Michael Neunert, Brendan Tracey &, Francesco

Fritz, Cristian Galperti, Andrea Huber, James Keeling, Maria Tsimpoukelli, Jackie Kay, Antoine Merle,

Jean-Marc Moret, Seb Noury, Federico Pesamosca, David Pfau, Olivier Sauter, Cristian Sommariva, ...

Martin Riedmiller ~ + Show authors

Nature 602, 414-419 (2022) | Cite this article
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PDEs are the building blocks of science
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PDEs are the building blocks of science
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How can we solve PDEs?

Mesh for finite element method
Source: COMSOL

Finite difference methods, finite element
Angel et al, Predicting SLS Launch Environment using a Novel Multiphase methOdS’ ﬂmte YOIUme meth.OqS, SpeCtral
Formulation (NASA) SC22 (2022) Source: NASA methods, domain decomposition, mesh-free
methods, ...

Required: 500 million grid cells, ran for several

weeks on 8,000 cores, generating 400 TB (1) Typically, computational cost is the main

challenge
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Grand challenges in science

Data (in terabytes) recorded on tapes at CERN month-by-month (2010-2018) (Source: CERN)
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Figure 1. Light curves of K2-415 obtained by K2 (top; K2SFF) and TESS (bottom; PDC-SAP). Those data were taken at
long (= 29 minutes) and short (2 minutes) cadences for K2 and TESS light curves, respectively. The red solid line in each panel
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Hirano et al, An Earth-sized Planet around an M5 Dwarf Star at 22 pc, The
Astronomical Journal (2023)
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Challenges of deep learning

Number of Parameters of Significant Machine Learning Systems by Domain, 1950-2022
Source: Epoch, 2022 | Chart: 2023 Al Index Report
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We use the same model and architecture as GPT-2 [RWC ™ 19], including the modified initialization, pre-normalization,
and reversible tokenization described therein, with the exception that we use alternating dense and locally banded sparse
attention patterns in the layers of the transformer, similar to the Sparse Transformer [CGRS19]. To study the dependence
of ML performance on model size, we train 8 different sizes of model, ranging over three orders of magnitude from 125
million parameters to 175 billion parameters, with the last being the model we call GPT-3. Previous work [KMH20]

2.2 Training Dataset

Table 2.2 shows the final mixture of datasets that we used in training. The CommonCraw] data was downloaded from
41 shards of monthly CommonCrawl] covering 2016 to 2019, constituting 45TB of compressed plaintext before filtering
and 570GB after filtering, roughly equivalent to 400 billion byte-pair-encoded tokens. Note that during training, datasets

Brown et al, Language Models are Few-Shot Learners, NeurlPS (2020)
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Challenges of deep learning
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He et al, Deep Residual
Learning for Image Recognition,
CVPR (2015)

Kim et al, Textual Explanations for Self-Driving Vehicles, ECCV (2018)
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The challenge of generalisation

Labrador retriever 52% laboratory coat 40%
Chesapeake Bay retriever 7% jeweler's loupe 8%
golden retriever 5% English foxhound 6%
Canis dingo 4% soccer ball 4%
bloodhound, sleuthhound 3% neck brace 3%
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The challenge of reasoning

A street with absolutely no lamp posts

& Designer Powered by DALL-E 3

Source: DALL-E 3
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Nailve application of deep learning
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What is Scientific Machine
Learning (SciML)?
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What is scientific machine learning?

Inputs to scientific workflow

'

Black box
model

'

Predictions
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What is scientific machine learning?

Inputs to scientific workflow

'

Suffers from:

Lack of interpretability Q

Black box
model

L

Requires lots of training data

Poor generalisation ’

'

Predictions

Workshop on Scalable Physics-Informed Neural Networks | Session 1 - Introduction to SciML and PINNs

23



What is scientific machine learning?

Inputs to scientific workflow

Inputs to scientific workflow ‘

Predictions

Predictions
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What is scientific machine learning?

Inputs to scientific workflow

0.0
. : Scientific
Machine learning understanding

SciML

more powerful, robust,
interpretable models

v

Predictions
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Scientific machine learning

Solver-in- the 1oop

>1CS nstrained aus

Physics- 1nformed neural networks
AI Feynman

qlltonian neural networks . .
Learned sub-griad processes ‘

DeepONets PDE-NetAlgorithm unrolling

Learned regularisation

F 1 " Physics-informed neural operators
ourler neura Opencroalngghysmal symmetries Neural ODEs

Machine Scientific
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A rapidly growing field
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Interdisciplinarity drives SciML

Domain
knowledge
: Machine
Collaboration learning
High
Applied math performance
computing
Soa
)
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How can we incorporate scientific
principles into ML?
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Ways to incorporate scientific principles into machine learning

Loss function Architecture Hybrid approaches

Data
loss
Physics
loss
Example: Example: Example:
Physics-informed neural networks Encoding symmetries / conservation laws Neural differential equations
(add governing equations to loss (e.g. energy conservation, rotational (incorporating neural networks into PDE
function) invariance) models)
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A plethora of SciML techniques

Constraining physical quantities
Encoding conservation laws
Auxiliary tasks
Encoding governing equations
[ 0ss function Residual modelling
Differentiable physics
Neural differential equations

In-the-loop methods Traditional

Naive ML workflows

Adding physical variables Hybrid approaches
Encoding symmetries
Physics-inspired NAS
ML inspired by Koopman theory

Physically constrained GPs

Architecture

Source: B Moseley, Physics-informed machine learning:
from concepts to real-world applications, PhD thesis, 2022
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A plethora of SciML techniques

Naive ML

Fully learned

Fully data-driven

No physics constraints

Constraining physical quantities
Encoding conservation laws
Auxiliary tasks
Encoding governing equations
[ 0ss function Residual modelling
Differentiable physics
Neural differential equations

In-the-loop methods Traditional

Adding physical variables Hybrid approaches workflows

Encoding symmetries
Physics-inspired NAS No Iearning
ML inspired by Koopman theory

Physically constrained GPs )
No data required

Architecture

Hard physics
constraints

Source: B Moseley, Physics-informed machine learning:
from concepts to real-world applications, PhD thesis, 2022
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Ways to incorporate scientific principles into machine learning

Loss function

Physics-informed neural networks
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N\ A NEARL AN/ ¢
AUGUST 28, 2021 BY ME

So, what is a physics-informed neural network?

Machine learning has become increasingly popular across science, but do these algorithms actually
“understand” the scientific problems they are trying to solve? In this article we explain physics-
informed neural networks, which are a powerful way of incorporating physical principles into
machine learning. + Follow

Machine Learning | Domain Expertise: exploiting the best of the two
worlds with Physics-informed Neural Networks ..more

A machine learning revolution in science

Machine learning has caused a fundamental shift in the scientific method. Traditionally, scientific Problem
research has revolved around theory and experiment: one hand-designs a well-defined theory and Harmonic oscillator
then continuously refines it using experimental data and analyses it to make new predictions.

But today, with rapid advances in the field of machine learning and dramatically increasing amounts
of scientific data, data-driven approaches have become inc

e e S0 what 1s a physics-informed - s
Learning to model experimental data n e u ra I n etWO rk? e

e Neural network prediction
Let’s look at one way machine learning can be used for scienturic researcn. imagine we are given

Training data

some experimental data points that come from some unknown physical phenomenon, e.g. the \ Physics-informed neural nc‘;’r"a‘i’nrifg step: 150
orange points in the animation below. \ 7\ ) .
\ [\ / T\ . T Neural network prediction
. . . . . . . . \ /Y \ /'/ N :I:;'s‘:::l::;rammg locations
A common scientific task is to find a model which is able to accurately predict new experimental \ / :

measurements given this data.

S80 14,975 464 comments - 704 reposts
Training step: 810
© Love ® Comment ) Repost <« Send

—— Exact solution
=== Neural network prediction
Training data
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What is a physics-informed neural network??

Problem: damped harmonic

oscillator
=0
Mz TR T =

Initial conditions:

u(t=0)=1
ut(t=0)=0

u = displacement
m = mass of oscillator

= coefficient of friction
H ) Raissi et al, Physics-informed neural networks: A deep learning framework for solving forward
k = spring constant and inverse problems involving nonlinear partial differential equations, JCP (2018)
Lagaris et al, Artificial neural networks for solving ordinary and partial differential equations, IEEE

(1998)
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What is a physics-informed neural network??

Problem: damped harmonic

oscillator
=0
Mz TR T

Key idea: use a neural
network to directly
approximate the solution

h-
SRR
0’0 O

0{‘0
r\&:\\;« 7
///< i‘ \

O NN(t,8) ~ u(t) @

Raissi et al, Physics-informed neural networks: A deep learning framework for solving forward

and inverse problems involving nonlinear partial differential equations, JCP (2018)

Lagaris et al, Artificial neural networks for solving ordinary and partial differential equations, IEEE

(1998)
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What is a physics-informed neural network??

Problem: damped harmonic

oscillator
=0
Mz TR T

L(0) = A, (a(t = 0,0) — 1)?

Boundary loss 2

+2 (dﬁ(t—OB) o)
2\ dt “— —

1 Np dz d 2
RiLe s { T _z ([m_z tu—+ k] u(t;, 9))
(O NN(t,0) =~ u(t) (aka PDE residual) Np & dt dt e

Raissi et al, Physics-informed neural networks: A deep learning framework for solving forward

and inverse problems involving nonlinear partial differential equations, JCP (2018)

Lagaris et al, Artificial neural networks for solving ordinary and partial differential equations, IEEE

(1998)
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What is a physics-informed neural network??

Problem: damped harmonic
oscillator \ Training step: 150

/\ ——— Exact solution
mmses Neural network prediction
Boundary loss training locations
Physics loss training locations
d’u  du

mﬁ+,u—+ku=0

dt
L(0) = A, (a(t = 0,0) — 1)?

Boundary loss 2

+2 (dﬁ(t—OB) o)
2\ dt “— —

2

1 & d? d
Physics loss { n _Z lm_z iy k]ﬁ(ti, 0)
(O NN(t,0) =~ u(t) (aka PDE residual) Np & dt dt =L

Raissi et al, Physics-informed neural networks: A deep learning framework for solving forward
and inverse problems involving nonlinear partial differential equations, JCP (2018)

Lagaris et al, Artificial neural networks for solving ordinary and partial differential equations, IEEE
(1998)
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What is a physics-informed neural network??

Training step: 150
/\ —— Exact solution

/—\ ==es Neural network prediction

Boundary loss training locations
Physics loss training locations

L() = A, (a(t = 0,0) - 1)?

{ti}livzp1 are known as collocation points, Boundary loss , o 0.8)— 0 2
which are sampled throughout the domain T A2 (E GEIE) _—)
Ny 2
A4, 1, are scalar hyperparameters which : 1 [ d? d
T Physics loss + _Z m— +u—+ k|1(¢;, 0)
balance the contribution of each loss term (aka PDE residual){ N l_ dt2 dt 2l

Raissi et al, Physics-informed neural networks: A deep learning framework for solving forward
and inverse problems involving nonlinear partial differential equations, JCP (2018)
Lagaris et al, Artificial neural networks for solving ordinary and partial differential equations, IEEE

(1998)
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What is a physics-informed neural network??

Training loop:

1. Sample boundary/ physics training points

2. Compute network outputs

3. Compute 15t and 2" order gradient of
network output with respect to network

input == Neural network prediction

Compute loss . _ Boundary loss training locations
Compute gradient of loss function with Physics loss training locations

respect to network parameters
6. Take gradient descent step L(6) = A, (a(t = 0,8) _l)z
Boundary loss dil 2
+ 2, (—(t =0,0) - o)

—— Exact solution

oA

How can we compute the gradients (e.g. Z—? and

de) in steps 3 and 57

2
Physics loss { Z ([ —— + + k] u(tl, 0))
(aka PDE residual) dt
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What is a physics-informed neural network??

Training loop:

1. Sample boundary/ physics training points
2. Compute network outputs

3. Compute 15t and 2" order gradient of
network output with respect to network
input

Compute loss

Compute gradient of loss function with
respect to network parameters

6. Take gradient descent step

- Exact solution

== Neural network prediction
Boundary loss training locations
Physics loss training locations

4.
5.

L() = A, (a(t = 0,0) - 1)?

Boundary loss 2

How can we compute the gradients (e.g. Z—Iz and + A, (@ (t=0,0)— o)
At m— —

dL, .

E) in steps 3 and 57 N, 2 ,
Physics loss { + iz [m—d + yi + k] u(t;, 0)

We can use autograd! (aka PDE residual) N, l_ dt? dt =

torch.autograd.grad (outputs, inputs, grad_outputs=None, retain_graph=None, create_graph=False,
only_inputs=Tzue, allow_unused=False, is_grads_batched=False) [SOURCE]

Computes and returns the sum of gradients of outputs with respect to the inputs.
grad_outputs should be a sequence of length matching output containing the “vector” in vector-Jacobian product,

usually the pre-computed gradients w.r.t. each of the outputs. If an output doesn’t require_grad, then the gradient can
be None).
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PINNSs for solving viscous Burgers’ equation

u(t, x)
. ® Np1
x ® Data (100 point 0.75
ata (100 points) 0.50 L,(0) = Z(u(xj' 0, 0) + sm(nx]))
0.25 Np1
0.00
—0.25 1 N b2
—0.50 2 o
—0.75 +N_Z(u —Ltw 0) _2)2
b2
Np3

Z(u(+1 t,8) — 0)?

t =025 t = 0.50 t=0.75 A%s
& 14 14 N 2
p N N N
L(®) 1 6u+A6u 021 (2. £, )
= — fl——v— | (x;t;
= ey p N, £ ot ox  0x?2) X2
- ::): 0_ :?: 0- l
S S
— _1_ _1_
1 1 1 1 1 1 1 1 1
1 0 1 1 0 1 i 0 1
L H 4 A X
= Eixact == = Prediction

Raissi et al, Physics-informed neural networks: A deep learning framework for

solving forward and inverse problems involving nonlinear partial differential
equations, JCP (2018)
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PINNSs for solving viscous Burgers’ equation

u(t, x)
. o Np1
x ®Data (100 points) 0.75
. 8:;(; L,(0) = N, Z(u(xj, 0, 9) + sm(nx]))
8 0.00 N
—0.25 b2
—0.58 AZ = 7)
~0.75 +— ) (4(=1,t,0) —0)
Np3

Z(u(ﬂ t,0) - 0)’
t=0.25 t = 0.50 t=0.75 Nb3

2
o1l 0214
L(B)— Z +u——v— xi, t;, 0
0 ey = / o <( 922 )(ll ))
= 07 s 07 = 07
S S S
/ v=0.01/

. . . . Jd N, =10,000 (Latin hypercube sampling)

-1 0 1 -1 0 1 -1 0 1 Np; + Npp + Np3 = 100

Fully connected network with 9 layers, 20 hidden units (3021
free parameters)

= Fixact == = Prediction

Raissi et al, Physics-informed neural networks: A deep learning framework for Tanh activation function
solving forward and inverse problems involving nonlinear partial differential _ o
equations, JCP (2018) L-BFGS optimiser
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Scientific Machine Learning Through
Physics—Informed Neural Networks: Where
we are and What's Next

Openaccess | Published: 26 July 2022
Volume 92, article number 88,(2022) Cite this article

Download PDF + © You have full access to this open access article

Salvatore Cuomo, Vincenzo Schiano Di Cola, Fabio Giampaolo, Gianluigi Rozza, Maziar Raissi & Francesco
Piccialli &9

5) 67k Accesses D 274 Citations @ 7 Altmetric Explore all metrics >

Abstract

Physics-Informed Neural Networks (PINN) are neural networks (NNs) that encode model
equations, like Partial Differential Equations (PDE), as a component of the neural network
itself. PINNs are nowadays used to solve PDEs, fractional equations, integral-differential
equations, and stochastic PDEs. This novel methodology has arisen as a multi-task
learning framework in which a NN must fit observed data while reducing a PDE residual.
This article provides a comprehensive review of the literature on PINNs: while the primary

ranl aftha otniAsrure +a charantariea thaca naturarlrze and thair valatad advrantamac Aand

PINNs — an entire research field
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Key scientific tasks

Depth, y

Source location, (s, s,)

Velocity, c¢(z,y)

T
g
>

Velocity

Low

Distance, z

Wavefield, u(z,y,t)

ﬁ

Wavefield, u(z,y,t)
Velocity, e(z,y)

Source location, (s, s,)

\
-

Wavefield, u(z,y,t)

Velocity, c(z,y)

Source location, (s,,s,)

Wave equation

Forward simulation

Estimate wavefield u(z,y,t)
Given velocity c(z,y)
and source location (s,,s,)

Inversion

Estimate velocity c(z,y)
and source location (s,,s,)
Given wavefield u(z,y,t)

Equation discovery

Estimate governing equation

Given wavefield u(z,y,t),
velocity c(z,y),
and source location (s,,s,)

b =F(a)

b =F(a)

b = F(a)

PINNs can be used to solve forward,
inverse and equation discovery
problems related to PDEs

a = set of input conditions

F = physical model of the system
(usually a PDE)

b = resulting properties given F and a
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PINNSs for solving wave equation

t=0.00s t=0.05s t=0.10s t=0.15s

VeIOC|ty model, c(x,y)

Ground truth FD
simulation

t=0.20s

Depth (km)

x O Vlé @3 x’i"

y :"A é)’ AL
X

¢ ‘ A\\ 11: :

NS

Np
/1 2
L,(8) = N_Z (ﬁ(xj»er tj,0) — upp(x;, ¥, tj))

K i
L (9) = N, Z ([ c(x )2 atzl w(xg, it 0))

Workshop on Scalable Physics-Informed Neural Networks | Session 1

Moseley et al, Solving the wave equation with physics-
informed deep learning, ArXiv (2020)

Boundary data from FD simulation (first 0.02 seconds)

Physics loss training points randomly sampled over
entire x-y-t domain (up to 0.2 seconds)

- Introduction to SciML and PINNs



PINNSs for solving wave equation

Ground truth FD
simulation

“Naive” NN

PINN

Difference (NN)

Difference (PINN)

Velocity model, c(x, y)

t=0.00s t=0.05s t=10.10s t=0.15s t=0.20s

Moseley et al, Solving the wave equation with physics-
informed deep learning, ArXiv (2020)

Mini-batch size N, = N,, = 500 (random
sampling)

Fully connected network with 10 layers,
1024 hidden units

Softplus activation

Adam optimiser
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PINNSs for inverse problems

10

[y |

0
-5
) 4 : -10
0 2 4 6 8 10 12
X (mm)
(a) Actual data at t = 12.38 pus.
Np
A 2
Ld(e) = N—bz (NN(Xj,yj, tj, 9) . udata(xj,yj, tj))
J
2

1 ZN” 1 92
— 2 _ RV
Lp (0) ¢) - Np i [V C(xi, ¢)2 atZI NN(xl; Vi tlr 9)

Treat velocity model as another neural
network, and simultaneously learn it

Shukla et al, Physics-Informed Neural Network for Ultrasound
Nondestructive Quantification of Surface Breaking Cracks,
Journal of Nondestructive Evaluation (2020)

10

[y |

0 , ~10
6 8 10 12

X (mm)

(b) Data recovered from PINN simulation at ¢ = 12.38 us.
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Shukla et al, Physics-Informed Neural Network for Ultrasound
Nondestructive Quantification of Surface Breaking Cracks,

P I N N S fo r i n Ve rS e p ro b I e m S Journal of Nondestructive Evaluation (2020)

10

[y |

y (mm)

6 8 10 12
X (mm)

(b) Data recovered from PINN simulation at ¢ = 12.38 us.

0

o
-—

0 2 4 6 8 10 12 0
X (mm)

(a) Actual data at t = 12.38 pus.

Np 1
A 2 8
Ld(e) = N—bz (NN(Xj,yj, tj, 0) S udam(xj,yj, tj)) = 7
j E =
N 2 = 2 &
L,(8 )—1i vt NGyt 0) "0 :
0PN, 2 cCo, p)2oez] TR
Treat velocity model as another neural 0 2 4 « (Slm) s 10 12
network, and simultaneously learn it _ ,
(d) Speed v(z, y) recovered from PINN simulation.
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PINNs for equation discovery

DNN with Unknown Parameters @ Physical Law with Unknown Parameters A
Layer 1 ... Layer /... Layer L AutoDiff PDE Construction Sparse Regression
1 1 1 1 R:u—¢pA—0 UV Wy P1P2¢3 Bs AATAY
u = {u,v,w} u where @ 1
t (x, £ 6) O 0y 0y uy (1] g = {ug, ve, we } g 11
u(x, t; ) u o} o
T u v AU AV AW E> c .
(0 N (9) v(x,t;0) 9/ 9® :> ¢ u, @ w VY & ) '
T _ |ug . . . :
w(x, t; 0) Oy Oy 0y Candidate uy ¢ = Va A= : : _8
2 v Function B ou Wy /\.Z‘u1 )\.Evl /\.'iw1 To) L i
x = {z,y, 2} 0. 0. 0, Selection . Y Uy AN AW s i | | | Sparse
T derivatives : | © Jx1 Note: A is sparse u(e) P(0) A
1 , . 1 :
Data Loss: £;(0;D,) = —|[u’ — u™||2 L(6,A;D,,D.) = L4(0;Dy) + L, (0,A;D.) + B||Alo Residual Loss: £,(6,A;D,) = —||U(0) = <I'(0)A”
-  Nm N - S ~ - — . —— - Ne
measurement total loss data loss physics loss regularization collocation points /A\kﬂ
. 2 3 2 a h . A ADO 4.
Solution by ADO: Akt = arg min [||U(0k) — <I>(0k)A||§ o ﬁ||A||0] by STRidge  Ok+1 := argmin [£4(0; Dy) + aLy(0, Akt1;De)] by DNN training b,
= +1

» Trains by alternating between updating A and 6

Chen et al, Physics-informed learning of governing equations from scarce
data, Nature communications (2021)
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PINNs for equation discovery

Noisy Measurement: I/BC 1 Noisy Measurement: I/BC 2 Noisy Measurement: I/BC 3

OO _—m—-— —————3—— ° Py
£ x10°3
%_057 -O.g Thresholding 7: i zﬂul’m % 1t . ” y :
K o . * PINN “discovering” Burgers’ equation
§ il N — —=1002- Ul
| | | ] |
Pre-training (80k epochs) Post-training (80k epochs) * By combining datasets sampled under three
: . o :
1 Predicted 4: I/BC 1 ; i Predicted 4: I/BC 2 5 g Predicted @: I/BC 3 ] dlfferent I/BCS Wlth 1 O /0 noise
& 0- io & OM !1 a 0: io
=] -1 -1 0 -1 -1
0 0.5 1 0 0.5 1 0 0.5 1
t t t
. Error: I/BC 1 . Error: I/BC 2 o ) Error: I/BC 3
L ‘ / 0.05 ’\——\ 0
8 0f 01 40 0 8 0
| B -0.2 ) ] 005 . . . .
3 5 R 01 Chen et al, Physics-informed learning of governing
i 01;5 . i Of 1 & Of i equations from scarce data, Nature communications
2021
Ground truth: u; + uu, — 0.0032uz; = 0 Discovered: u; + 1.002uu, — 0.0032u,, = 0 ( )
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Code along — Training a PINN in PyTorch

Follow along here:

github.com/benmoseley/
scalable-pinns-
workshop

SCAN ME
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