

Workshop overview

What would you like to get out of this workshop? 60 responses

Workshop overview

14:00-15:30 Introduction to JAX (Ben)

15:45-16:45 Advanced concepts in JAX (Pawel)

15:30-15:45 Break

16:45 onwards
Group discussions
on JAX

Workshop overview

14:00-15:30 Introduction to JAX (Ben)

15:45-16:45 Advanced concepts in JAX (Pawel)

15:30-15:45 Break

16:45 onwards
Group discussions
on JAX

Goals:

- 1) introduce you to JAX
- 2) help build a **community** of JAX users at ETH
- 3) help you **solve** any JAX problems you have in your own work

What is JAX?

JAX = accelerated array computation + program transformation

.. Which is incredibly useful for high-performance numerical computing and large-scale (Sci)ML

JAX in ML

Google/ DeepMind, Gemini: A Family of Highly Capable Multimodal Models, ArXiv (2023)

ETH AI CENTER

Silver et al, Mastering the game of Go without human knowledge, Nature (2017)

JAX in scientific computing

Surface velocity (m s⁻¹)

ETH AI CENTER

← Ocean surface velocity, simulated in 24 hr using 16 NVIDIA A100 GPUs

Hafner et al, Fast, Cheap, and Turbulent - Global Ocean Modeling With GPU Acceleration in Python, Journal of Advances in Modeling Earth Systems (2021)

What is JAX?

JAX = accelerated array computation + program transformation

import jax.numpy as jnp

- JAX is NumPy on the CPU and GPU!
- JAX uses XLA (Accelerated Linear Algebra) to compile and run NumPy code, lightning fast

What is JAX?

JAX = accelerated array computation + program transformation

import jax.numpy as jnp

- JAX is NumPy on the CPU and GPU!
- JAX uses XLA (Accelerated Linear Algebra) to compile and run NumPy code, *lightning fast*

Image credit: AssemblyAI

JAX can automatically differentiate and parallelise native Python and NumPy code

JAX = accelerated array computation

(10,000 x 10,000) (10,000 x 10,000) NumPy on CPU (Apple M1 Max): 7.22 s ± 109 ms (10,000 x 10,000) (10,000 x 10,000) JAX on GPU (NVIDIA RTX 3090): 56.9 ms ± 222 µs (**126x** faster)

Why is this operation faster on the GPU?

(10,000 x 10,000) (10,000 x 10,000) NumPy on CPU (Apple M1 Max): 7.22 s ± 109 ms (10,000 x 10,000) (10,000 x 10,000) JAX on GPU (NVIDIA RTX 3090): 56.9 ms ± 222 µs (**126x** faster)

 $(10,000 \times 10,000) (10,000 \times 10,000)$

NumPy on CPU (Apple M1 Max):

(10,000 x 10,000) (10,000 x 10,000) JAX on GPU (NVIDIA RTX 3090): 56.9 ms ± 222 µs (**126x** faster)

CPU (Multiple Cores)

GPU (Hundreds of Cores)

Image credit: MathWorks

Low latency Ideal for serial processing

High throughput Ideal for parallel processing

 $7.22 s \pm 109 ms$

Wave simulation


```
import numpy as np
   assert velocity.shape == density.shape == (NX, NY)
  assert source_i.shape == (2,)
  pressure_present = np.zeros((NX, NY))
  pressure_past = np.zeros((NX, NY))
  kronecker_source = np.zeros((NX, NY))
   factor = 1e-3
  kappa = density*(velocity**2)
   density\_half\_x = np.pad(0.5 * (density[1:NX,:]+density[:NX-1,:]), [[0,1],[0,0]], mode="edge")
   density\_half\_y = np.pad(0.5 * (density[:,1:NY] + density[:,:NY-1]), [[0,0],[0,1]], mode="edge")
   def single_step(carry, it):
       value dpressure dx = np.pad((pressure present[1:NX,:]-pressure present[:NX-1,:]) / DELTAX, [[0,1],[0,0]], mode="constant", constant values=0.)
       value_dpressure_dy = np.pad((pressure_present[:,:NY-]-pressure_present[:,:NY-1]) / DELTAY, [[0,0],[0,1]], mode="constant", constant_values=0.)
       pressure_xx = value_dpressure_dx / density_half_x
       value\_dpressurexx\_dx = np.pad((pressure\_xx[1:NX,:]-pressure\_xx[:NX-1,:]) / DELTAX, [[1,0],[0,0]], mode="constant", constant\_values=0.)
       value_dpressureyy_dy = np.pad((pressure_yy[:,1:NY]-pressure_yy[:,:NY-1]) / DELTAY, [[0,0],[1,0]], mode="constant", constant_values=0.)
       a = (np.pi**2)*f0*f0
       source term = factor * (1 - 2*a*(t-t0)**2)*np.exp(-a*(t-t0)**2)
                          + 2 * pressure_present \
                          + DELTAT*DELTAT*(dpressurexx_dx+dpressureyy_dy)*kappa
       pressure_future += DELTAT*DELTAT*(4*np.pi*(velocity**2)*source_term*kronecker_source)# latest seismicCPML
       pressure past = pressure present
       pressure present = pressure future
       return carry, wavefield
   wavefields = np.zeros((NSTEPS, NX, NY), dtype=float)
       wavefields[it] = w.copy()
   return wavefields
```

Wave simulation


```
import numpy as np
       assert velocity.shape == density.shape == (NX, NY)
       assert source_i.shape == (2,)
      pressure_present = np.zeros((NX, NY))
      kronecker_source = np.zeros((NX, NY))
      kappa = density*(velocity**2)
       density\_half\_x = np.pad(0.5 * (density[1:NX,:]+density[:NX-1,:]), [[0,1],[0,0]], mode="edge") + (density[1:NX,:]+density[:NX-1,:]), mode="edge") + (density[1:NX,:]+density[:NX-1,:]), mode="edge") + (density[1:NX,:]+density[:NX-1,:]), mode="edge") + (density[:NX-1,:]), mode="edge") + (density[:
       density\_half\_y = np.pad(0.5 * (density[:,1:NY] + density[:,:NY-1]), [[0,0],[0,1]], mode="edge")
       def single_step(carry, it):
                 value_dpressure_dx = np.pad((pressure_present[1:NX,:]-pressure_present[:NX-1,:]) / DELTAX, [[0,1],[0,0]], mode="constant", constant_values=0.)
                value_dpressure_dy = np.pad((pressure_present[:,:NY]-pressure_present[:,:NY-1]) / DELTAY, [[0,0],[0,1]], mode="constant", constant_values=0.)
                pressure_xx = value_dpressure_dx / density_half_x
                value\_dpressurexx\_dx = np.pad((pressure\_xx[1:NX,:]-pressure\_xx[:NX-1,:]) / DELTAX, [[1,0],[0,0]], mode="constant", constant\_values=0.)
                value_dpressureyy_dy = np.pad((pressure_yy[:,1:NY]-pressure_yy[:,:NY-1]) / DELTAY, [[0,0],[1,0]], mode="constant", constant_values=0.)
                a = (np.pi**2)*f0*f0
                source term = factor * (1 - 2*a*(t-t0)**2)*np.exp(-a*(t-t0)**2)
                                                               + 2 * pressure present \
                                                               + DELTAT*DELTAT*(dpressurexx_dx+dpressureyy_dy)*kappa
                wavefield = pressure_future
                pressure past = pressure present
                pressure present = pressure future
                return carry, wavefield
       wavefields = np.zeros((NSTEPS, NX, NY), dtype=float)
                wavefields[it] = w.copy()
       return wavefields
```

```
import jax.numpy as jnp
import jax
def forward(velocity, density, source_i, f0, NX, NY, NSTEPS, DELTAX, DELTAY, DELTAT):
   assert velocity.shape == density.shape == (NX, NY)
   assert source_i.shape == (2,)
   pressure_present = jnp.zeros((NX, NY))
   pressure_past = jnp.zeros((NX, NY))
   kronecker_source = jnp.zeros((NX, NY))
  kronecker_source = kronecker_source.at[source_i[0], source_i[1]].set(1.)
   factor = 1e-3
  kappa = density*(velocity**2)
   density\_half\_x = jnp.pad(0.5 * (density[1:NX,:]+density[:NX-1,:]), [[0,1],[0,0]], mode="edge")
   density_half_y = jnp.pad(0.5 * (density[:,1:NY]+density[:,:NY-1]), [[0,0],[0,1]], mode="edge")
  carry = pressure_past, pressure_present
   def single step(carry, it):
       value_dpressure_dx = jnp.pad((pressure_present[1:NX,:]-pressure_present[:NX-1,:]) / DELTAX, [[0,1],[0,0]], mode="constant", constant_values=0.)
       value_dpressure_dy = jnp.pad((pressure_present[:,1:NY]-pressure_present[:,:NY-1]) / DELTAY, [[0,0],[0,1]], mode="constant", constant_values=0.)
       pressure_yy = value_dpressure_dy / density_half_y
       value_dpressurexx_dx = jnp.pad((pressure_xx[1:NX,:]-pressure_xx[:NX-1,:]) / DELTAX, [[1,0],[0,0]], mode="constant", constant_values=0.)
       value\_dpressureyy\_dy = jnp.pad((pressure\_yy[:,1:NY]-pressure\_yy[:,:NY-1]) / DELTAY, [[0,0],[1,0]], mode="constant", constant\_values=0.)
       a = (jnp.pi**2)*f0*f0
       source_term = factor * (1 - 2*a*(t-t0)**2)*jnp.exp(-a*(t-t0)**2)
                           + 2 * pressure present \
                           + DELTAT*DELTAT*(dpressurexx_dx+dpressureyy_dy)*kappa
       pressure_future += DELTAT*DELTAT*(4*jnp.pi*(velocity**2)*source_term*kronecker_source)# latest seismicCPML
       pressure_past = pressure_present
       return carry, wavefield
   _, wavefields = jax.lax.scan(single_step, carry, jnp.arange(NSTEPS))
   return wavefields
```



```
import numpy as np
def forward(velocity, density, source_i, f0, NX, NY, NSTEPS, DELTAX, DELTAY, DELTAT):
   assert velocity.shape == density.shape == (NX, NY)
   assert source_i.shape == (2,)
   pressure_present = np.zeros((NX, NY))
   pressure_past = np.zeros((NX, NY))
   kronecker_source = np.zeros((NX, NY))
   factor = 1e-3
   density_half_x = np.pad(0.5 * (density[1:NX,:]+density[:NX-1,:]), [[0,1],[0,0]], mode="edge")
   density\_half\_y = np.pad(0.5 * (density[:,1:NY] + density[:,:NY-1]), [[0,0],[0,1]], mode="edge")
   def single_step(carry, it):
       value_dpressure_dx = np.pad((pressure_present[1:NX,:]-pressure_present[:NX-1,:]) / DELTAX, [[0,1],[0,0]], mode="constant", constant_values=0.)
       value_dpressure_dy = np.pad((pressure_present[:,1:NY]-pressure_present[:,:NY-1]) / DELTAY, [[0,0],[0,1]], mode="constant", constant_values=0.)
       pressure_xx = value_dpressure_dx / density_half_x
       value\_dpressurexx\_dx = np.pad((pressure\_xx[1:NX,:]-pressure\_xx[:NX-1,:]) / DELTAX, [[1,0],[0,0]], mode="constant", constant\_values=0.)
       value_dpressureyy_dy = np.pad((pressure_yy[:,1:NY]-pressure_yy[:,:NY-1]) / DELTAY, [[0,0],[1,0]], mode="constant", constant_values=0.)
       dpressurexx_dx = value_dpressurexx_dx
       a = (np.pi**2)*f0*f0
       source_term = factor * (1 - 2*a*(t-t0)**2)*np.exp(-a*(t-t0)**2)
                           + 2 * pressure present \
       pressure_future += DELTAT*DELTAT*(4*np.pi*(velocity**2)*source_term*kronecker_source)# latest seismicCPML
       wavefield = pressure_future
       pressure past = pressure present
       return carry, wavefield
   wavefields = np.zeros((NSTEPS, NX, NY), dtype=float)
   for it in range(NSTEPS):
       wavefields[it] = w.copy()
   return wavefields
```

Wave simulation

NumPy on **CPU** (Apple M1 Max): $8.06 \text{ s} \pm 54.7 \text{ ms}$

JAX (jit compiled) on **CPU** (Apple M1 Max): 1.58 s ± 11.6 ms (**5x** faster)

JAX (jit compiled) on **GPU** (NVIDIA RTX 3090): 65.5 ms \pm 30.2 μ s (123x faster)

Live coding examples

Follow along here:

What is JAX?

JAX = accelerated array computation + program transformation

- JAX is NumPy on the CPU and GPU!
- JAX uses XLA (Accelerated Linear Algebra) to compile and run NumPy code, *lightning fast*

Image credit: AssemblyAI

JAX can automatically differentiate and parallelise native Python and NumPy code

JAX = program transformation


```
import jax
import jax.numpy as jnp

def f(x):
    return x**2
```



```
import jax
import jax.numpy as jnp

def f(x):
    return x**2

dfdx = jax.grad(f)# this returns a python function!
```



```
import jax
import jax.numpy as jnp
def f(x):
    return x**2
dfdx = jax.grad(f)# this returns a python function!
x = jnp.array(10.)
print(x)
print(dfdx(x))
10.0
20.0
```



```
import jax
import jax.numpy as jnp
def f(x):
    return x**2
dfdx = jax.grad(f)# this returns a python function!
x = jnp.array(10.)
print(x)
print(dfdx(x))
10.0
20.0
```

Step 1: convert Python function into a simple intermediate language (jaxpr)

```
print(jax.make_jaxpr(f)(x))
---
{ lambda; a:f32[]. let b:f32[] = integer_pow[y=2] a in (b,) }
```



```
import jax
import jax.numpy as jnp
def f(x):
    return x**2
dfdx = jax.grad(f)# this returns a python function!
x = jnp.array(10.)
print(x)
print(dfdx(x))
10.0
20.0
```

Step 1: convert Python function into a simple intermediate language (jaxpr)

```
print(jax.make_jaxpr(f)(x))
---
{ lambda ; a:f32[]. let b:f32[] = integer_pow[y=2] a in (b,) }
```

Step 2: apply transformation (e.g. return the corresponding gradient function)

```
print(jax.make_jaxpr(dfdx)(x))
---
{ lambda ; a:f32[]. let
    _:f32[] = integer_pow[y=2] a
    b:f32[] = integer_pow[y=1] a
    c:f32[] = mul 2.0 b
    d:f32[] = mul 1.0 c
    in (d,) }
```



```
import jax
import jax.numpy as jnp
def f(x):
    return x**2
dfdx = jax.grad(f)# this returns a python function!
x = jnp.array(10.)
print(x)
print(dfdx(x))
10.0
20.0
```

Program transformation =

Transform one **program** to another **program**

- Treats programs as data
- Aka meta-programming

Program transformations are composable

```
import jax
import jax.numpy as jnp
def f(x):
    return x**2
dfdx = jax.grad(f)# this returns a python function!
d2fdx2 = jax.grad(dfdx)# transformations are composable!
x = jnp.array(10.)
print(x)
print(d2fdx2(x))
10.0
2.0
```


We can **arbitrarily compose** program transformations in JAX!

 This allows highly sophisticated workflows to be developed

Autodifferentiation in JAX

```
import jax
import jax.numpy as jnp
def f(x):
    return jnp.sum(x**2)
x = jnp.arange(5.)
g = jax.grad(f)# returns function which computes gradient
 = jax.jacfwd(f)# returns function which computes Jacobian
 = jax.jacrev(f)# returns function which computes Jacobian
h = jax.hessian(f)# returns function which computes Hessian
print(g(x))
print(h(x))
fval, vjp = jax.vjp(f, x)# returns function output and function which computes vjp at x
vjp_val = vjp(1.)
v = jnp.ones_like(x)
fval, jvp_val = jax.jvp(f, (x,), (v,)) # returns function output and <math>jvp at x
[0. 2. 4. 6. 8.]
[[2. 0. 0. 0. 0.]
[0. 2. 0. 0. 0.]
[0. 0. 2. 0. 0.]
[0. 0. 0. 2. 0.]
[0. 0. 0. 0. 2.]]
```

- JAX has many autodifferentiation capabilities
- all are based on compositions of vjp and jvp (i.e. reverse- and forward- mode autodiff)

Other function transformations

 $f(x) \rightarrow dfdx(x)$ is not the only function transformation we could make!

 What other function transformations can you imagine?


```
import jax
import jax.numpy as jnp

def f(w, b, x):
    y = jnp.dot(w, x) + b
    return y

x = jnp.array([1., 2.])
w = jnp.array([2., 4.])
b = jnp.array(1.)

print(f(w, b, x))
```

- Vectorisation is another type of function transformation
 - = parallelise the function across many inputs (on a single CPU or GPU)


```
import jax
import jax.numpy as jnp

def f(w, b, x):
    y = jnp.dot(w, x) + b
    return y

x = jnp.array([1., 2.])
w = jnp.array([2., 4.])
b = jnp.array(1.)

print(f(w, b, x))

# vectorise function across first dimension of x
f_batch = jax.vmap(f, in_axes=(None, None, 0))
```



```
import jax
import jax.numpy as jnp
def f(w, b, x):
   y = jnp.dot(w, x) + b
    return y
x = jnp.array([1., 2.])
w = jnp.array([2., 4.])
b = jnp.array(1.)
print(f(w, b, x))
# vectorise function across first dimension of x
f_batch = jax.vmap(f, in_axes=(None, None, 0))
x_batch = jnp.array([[1., 2.],
                     [3., 4.],
                     [5., 6.]])
print(f_batch(w, b, x_batch))
11.0
[11. 23. 35.]
```



```
import jax
import jax.numpy as jnp
def f(w, b, x): _____
    y = jnp.dot(w, x) + b
    return y
x = jnp.array([1., 2.])
w = jnp.array([2., 4.])
b = jnp.array(1.)
print(f(w, b, x))
# vectorise function across first dimension of x
f batch = jax.vmap(f, in axes=(None, None, 0))
x_batch = jnp.array([[1., 2.],
                     [3., 4.],
                     [5., 6.]])
print(f_batch(w, b, x_batch))
11.0
[11. 23. 35.]
```

```
lambda ; a:f32[2] b:f32[] c:f32[2]. let
  d:f32[] = dot_general[
   dimension_numbers=(([0], [0]), ([], []))
    preferred_element_type=float32
 e:f32[] = convert_element_type[new_dtype=float32 weak_type=False] b
 f:f32[] = add d e
in (f,) }
lambda; a:f32[2] b:f32[] c:f32[3,2]. let
 d:f32[3] = dot_general[
   dimension_numbers=(([0], [1]), ([], []))
   preferred_element_type=float32
  e:f32[] = convert_element_type[new_dtype=float32 weak_type=False] b
 f:f32[3] = add d e
in (f,) }
                                             + b
```



```
import jax
import jax.numpy as jnp
def f(w, b, x): ____
   y = jnp.dot(w, x) + b
    return y
x = jnp.array([1., 2.])
w = jnp.array([2., 4.])
b = jnp.array(1.)
print(f(w, b, x))
# vectorise function across first dimension of x
f batch = jax.vmap(f, in axes=(None, None, 0))
x_batch = jnp.array([[1., 2.],
                     [3., 4.],
                     [5., 6.]])
print(f_batch(w, b, x_batch))
11.0
[11. 23. 35.]
```

```
{ lambda ; a:f32[2] b:f32[] c:f32[2]. let
    d:f32[] = dot_general[
        dimension_numbers=(([0], [0]), ([], []))
        preferred_element_type=float32
        ] a c
        e:f32[] = convert_element_type[new_dtype=float32 weak_type=False] b
        f:f32[] = add d e
    in (f,) }
```

```
{ lambda; a:f32[2] b:f32[] c:f32[3,2]. let
    d:f32[3] = dot_general[
        dimension_numbers=(([0], [1]), ([], []))
        preferred_element_type=float32
        ] a c
        e:f32[] = convert_element_type[new_dtype=float32 weak_type=False] b
        f:f32[3] = add d e
    in (f,) }
```

+ b

GPU (Hundreds of Cores)

Much faster than a Python for loop!


```
import jax

def f(x):
    return x + x*x + x*x*x
```

- Compilation is another type of function transformation
 - = rewrite your code to be faster


```
import jax

def f(x):
    return x + x*x + x*x*x
```

- Compilation is another type of function transformation
 - = rewrite your code to be faster


```
import jax

def f(x):
    return x + x*x + x*x*x

jit_f = jax.jit(f)# compile function
```

- Compilation is another type of function transformation
 - = rewrite your code to be faster


```
import jax
def f(x):
    return x + x*x + x*x*x
jit_f = jax.jit(f)# compile function
key = jax.random.key(0)
x = jax.random.normal(key, (1000, 1000))
%timeit f(x).block_until_ready()
%timeit jit_f(x).block_until_ready()
870 \mus \pm 19.7 \mus per loop
117 \mus \pm 253 ns per loop
```

- Compilation is another type of function transformation
 - = rewrite your code to be faster

8x faster!


```
import jax
def f(x):
    return x + x*x + x*x*x
jit_f = jax.jit(f)# compile function
key = jax.random.key(0)
x = jax.random.normal(key, (1000, 1000))
%timeit f(x).block_until_ready()
%timeit jit_f(x).block_until_ready()
870 \mu s \pm 19.7 \mu s per loop
117 \mus \pm 253 ns per loop
```

- Compilation is another type of function transformation
 - = rewrite your code to be faster
- XLA (accelerated linear algebra) is used for CPU / GPU compilation
- Function is compiled first time it is called (i.e. "just-in-time")
 - = upfront cost!

8x faster!

JAX ecosystem

ML

MaxText (LLMs)

RLax

EasyLM

Scenic NumPyro

Optimisation with Optax

True velocity

Estimated velocity

Estimated wavefield

True wavefield


```
def loss(velocity, true_wavefield):
    estimated_wavefield = forward(velocity)
    return jnp.mean((estimated_wavefield-true_wavefield)**2)

# Initialize optimizer.

optimizer = optax.adam(learning_rate=le-1)
opt_state = optimizer.init(velocity)

# A simple gradient descent loop.
for _ in range(10000):
    grads = jax.grad(loss)(velocity, true_wavefield)
    updates, opt_state = optimizer.update(grads, opt_state)
    velocity = optax.apply_updates(velocity, updates)
```


JAX - the sharp bits

- Nure functions: JAX transforms are designed to work on pure functions
- **Static shapes**: JAX transforms require all shapes to be known in advance
- **Out-of-place updates**: JAX only allows out-of-place array updates
- **Random numbers**: JAX requires us to handle RNG explicitly

https://jax.readthedocs.io/en/latest/notebooks/Common Gotchas in JAX.html

