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Lecture overview
• The importance of partial differential 

equations (PDEs)

• What is a neural network?

• What is a physics-informed neural 

network?

• How can we train them to solve PDEs?
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Lecture overview
• The importance of partial differential 

equations (PDEs)

• What is a neural network?

• What is a physics-informed neural 

network?

• How can we train them to solve PDEs?

Learning objectives
• Explain what a physics-informed 

neural network is, and how to train it
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The importance of partial differential equations

Reaction-diffusion equation
Source: Kondo and Miura, Science (2010)

Einstein field equations

Source: The Event Horizon Telescope (2019)

Source: NOAA

Navier-Stokes equations

Schrödinger equation

Source: Wikipedia
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Solving PDEs
Solving PDEs is:

• Crucial for practically all domains of science

• Essential for understanding the behaviour of 
complex scientific phenomena
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Solving PDEs
Solving PDEs is:

• Crucial for practically all domains of science

• Essential for understanding the behaviour of 
complex scientific phenomena

Wave equation:

∇!𝑢 −
1

𝑐 𝑥, 𝑦 !
𝜕!𝑢
𝜕𝑡!

= 𝑠 𝑥, 𝑦, 𝑡

𝑢 = acoustic pressure
𝑐 = velocity
𝑠 = source function

Initial conditions:

𝑢 𝑥, 𝑦, 𝑡 = 0 = 0
𝑢" 𝑥, 𝑦, 𝑡 = 0 = 0
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Solving PDEs
Solving PDEs is:

• Crucial for practically all domains of science

• Essential for understanding the behaviour of 
complex scientific phenomena

Wave equation:

∇!𝑢 −
1

𝑐 𝑥, 𝑦 !
𝜕!𝑢
𝜕𝑡!

= 𝑠 𝑥, 𝑦, 𝑡

𝑢 = acoustic pressure
𝑐 = velocity
𝑠 = source function

Initial conditions:

𝑢 𝑥, 𝑦, 𝑡 = 0 = 0
𝑢" 𝑥, 𝑦, 𝑡 = 0 = 0Physics-informed neural networks offer a way to solve PDEs



Ben Moseley - Introduction to Physics-Informed Neural Networks – Mini Lecture 8

What is a neural network?

Neural networks are 
simply flexible functions 
fit to data

Example data:

Goal: given training data, tune the 
parameters 𝜽 so that the network 
approximates the true function, i.e.,

𝑁𝑁 𝒙, 𝜽 ≈ 𝒚(𝒙)

𝒙 𝒚 = 𝑁𝑁 𝒙, 𝜽
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What is a neural network?
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2-layer multi-layer 
perceptron

Biological neuron

Source: Wikipedia
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What is a neural network?
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For last layer:

𝑎'!

𝑎&!
= 𝜎
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Entire network:

𝑁𝑁 𝒙, 𝜽 = 𝜎 𝑊&𝜎 𝑊'𝒙 + 𝒃' + 𝒃&
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How do we train neural networks?

We tune the parameters so that they 
minimise some loss function, for 
example

𝐿 𝜽 =
1
𝑁6

#

$

𝑁𝑁 𝑥# , 𝜽 − 𝑦# !

Typically, by using gradient descent:

𝜽 ← 𝜽 − 𝛾
𝜕𝐿 𝜽
𝜕𝜽

𝛾 = step size, e.g. 0.001
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Using neural networks for simulation
Q: How could we solve this PDE using neural 
networks?

Wave equation:

∇!𝑢 −
1

𝑐 𝑥, 𝑦 !
𝜕!𝑢
𝜕𝑡!

= 𝑠 𝑥, 𝑦, 𝑡

𝑢 = acoustic pressure
𝑐 = velocity
𝑠 = source function

Initial conditions:

𝑢 𝑥, 𝑦, 𝑡 = 0 = 0
𝑢" 𝑥, 𝑦, 𝑡 = 0 = 0
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What is a PINN?

Raissi et al, Physics-informed neural networks: A deep learning framework for solving forward and inverse 
problems involving nonlinear partial differential equations, JCP (2018)
Lagaris et al, Artificial neural networks for solving ordinary and partial differential equations, IEEE (1998)

Damped harmonic oscillator:

𝑚
𝑑!𝑢
𝑑𝑡! + 𝜇

𝑑𝑢
𝑑𝑡 + 𝑘𝑢 = 0

Initial conditions:

𝑢 𝑡 = 0 = 1
𝑢" 𝑡 = 0 = 0

𝑢 =	displacement
𝑚 =	mass of oscillator
𝜇 =	coefficient of friction
𝑘 =	spring constant

𝑢

𝑡
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What is a PINN?

Raissi et al, Physics-informed neural networks: A deep learning framework for solving forward and inverse 
problems involving nonlinear partial differential equations, JCP (2018)
Lagaris et al, Artificial neural networks for solving ordinary and partial differential equations, IEEE (1998)

Damped harmonic oscillator:

𝑚
𝑑!𝑢
𝑑𝑡! + 𝜇

𝑑𝑢
𝑑𝑡 + 𝑘𝑢 = 0

Initial conditions:

𝑢 𝑡 = 0 = 1
𝑢" 𝑡 = 0 = 0

𝑢 =	displacement
𝑚 =	mass of oscillator
𝜇 =	coefficient of friction
𝑘 =	spring constant

Key idea: use a neural network to 
directly approximate the solution

𝑁𝑁 𝑡, 𝜽 ≈ 𝑢(𝑡)

𝑡 𝑁𝑁 𝑡, 𝜽 ≈ 𝑢(𝑡)

𝑢

𝑡
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What is a PINN?

Raissi et al, Physics-informed neural networks: A deep learning framework for solving forward and inverse 
problems involving nonlinear partial differential equations, JCP (2018)
Lagaris et al, Artificial neural networks for solving ordinary and partial differential equations, IEEE (1998)

Damped harmonic oscillator:

𝑚
𝑑!𝑢
𝑑𝑡! + 𝜇

𝑑𝑢
𝑑𝑡 + 𝑘𝑢 = 0

Initial conditions:

𝑢 𝑡 = 0 = 1
𝑢" 𝑡 = 0 = 0

𝑢 =	displacement
𝑚 =	mass of oscillator
𝜇 =	coefficient of friction
𝑘 =	spring constant

Key idea: use a neural network to 
directly approximate the solution

𝑁𝑁 𝑡, 𝜽 ≈ 𝑢(𝑡)

𝑡 𝑁𝑁 𝑡, 𝜽 ≈ 𝑢(𝑡)

Train the network using the loss function:

𝐿 𝜽 = 𝜆# 𝑁𝑁 𝑡 = 0, 𝜽 − 1 !

+	𝜆!
𝑑𝑁𝑁
𝑑𝑡

𝑡 = 0, 𝜽 − 0
!

+
1
𝑁$

5
%

&(

𝑚
𝑑!

𝑑𝑡! + 𝜇
𝑑
𝑑𝑡 + 𝑘 𝑁𝑁 𝑡%, 𝜽

!
Physics loss

𝐿$ 𝜽
(aka PDE residual)

Boundary loss
𝐿' 𝜽

𝑢

𝑡
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PINNs for solving wave equation

𝑦 𝑢

𝑡

𝑥

Moseley et al, Solving the wave equation with physics-
informed deep learning, ArXiv (2020)

𝐿' 𝜽 =
𝜆
𝑁'

5
(

&)

𝑁𝑁 𝑥(, 𝑦(, 𝑡(, 𝜽 − 𝑢)* 𝑥(, 𝑦(, 𝑡(
!

𝐿$ 𝜽 =
1
𝑁$

5
%

&(

∇! −
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𝑐 𝑥% !
𝜕!

𝜕𝑡! 𝑁𝑁 𝑥%, 𝑦%, 𝑡%, 𝜽
!

Boundary data from FD simulation (first 0.02 seconds)

Velocity model, 𝑐(𝑥, 𝑦) 

Ground truth FD 
simulation

Physics loss training points randomly sampled over 
entire 𝑥-𝑦-𝑡 domain (up to 0.2 seconds)
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PINNs for solving wave equation
Velocity model, 𝑐(𝑥, 𝑦) 

PINN

“Naïve” NN

Ground truth FD

Difference (NN)

Difference (PINN)

Moseley et al, Solving the wave equation with physics-
informed deep learning, ArXiv (2020)

Mini-batch size 𝑁' = 𝑁$ = 500 (random 
sampling)
Fully connected network with 10 layers, 
1024 hidden units
Softplus activation
Adam optimiser

Ground truth FD 
simulation
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• PINNs are a method for solving partial differential equations
• They use a neural network to directly approximate the solution to the PDE

Lecture summary

benmoseley.blog/teaching

Lecture slides + homework coding 
task (Jupyter notebook) on solving the 
1D harmonic oscillator with PINNs:
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AI in the Sciences and Engineering

• Aware of advanced applications of AI 

in science

• Understand key scientific machine 

learning concepts and themes

401-4656-21L AI in the Sciences and Engineering 2024 2

AI for science: a revolution?

! − 3   ! − 2	 ! − 1 !

Pathak et al, FourCastNet: A Global Data-driven High-resolution 
Weather Model using Adaptive Fourier Neural Operators, ArXiv (2022)

51K YouTube views
4.5/5 student feedback 

score

@CAMLabETHZurich


