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- What is scientific machine learning (SciML)?

- Ways to incorporate scientific principles into ML

- Our research: scaling SciML techniques to complex, real-world 
problems

Talk overview

Later in the talk: peering into shadows 
on the Moon using SciML

Credits: NASA Scientific Visualization Studio / QuickMap / LROC
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What is deep learning?

Input Model Output

x NN(x, θ) y = NN(x, θ)

Probability = Dog

y = W*σ W,x + b, + b*
For example:

Trained using:
- (Stochastic) gradient descent
- An appropriate loss function
- Many (millions of) training examples
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laboratory coat 40%
jeweler's loupe 8%
English foxhound 6%
soccer ball 4%
neck brace 3%

Labrador retriever 52%
Chesapeake Bay retriever 7%
golden retriever 5%
Canis dingo 4%
bloodhound, sleuthhound 3%

The challenge of generalisation



© Ben Moseley 2022Moseley, B., Nissen-Meyer, T., & Markham, A. (2020). Deep learning for fast simulation of seismic waves in complex media. Solid Earth

Within training distribution

Outside training distribution

“Naive” application of ML
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Major problem Solution

Despite big breakthroughs in science + AI

Naively using deep learning for scientific tasks usually 
leads to:

- Lack of interpretability

- Poor generalization

- Lots of training data required

Do neural networks really “understand” the scientific tasks 
they are being applied to?

A good scientific theory = makes novel predictions

Machine learning Scientific 
understanding

SciML

more powerful, robust, 
interpretable models 

Scientific machine learning (SciML)
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Scientific machine learning (SciML)

Physics-informed neural 
networks: # citations 
(reproduced from Cuomo et al, 2022)

Baker, N. et al (2019). Workshop Report on Basic Research Needs for Scientific Machine Learning: 
Core Technologies for Artificial Intelligence.
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Typical
SciML 
tasks
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Ways to incorporate scientific principles into 
machine learning 

ArchitectureLoss function Hybrid approaches

Data 
loss

Physics 
loss
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AI Feynman

Covariant neural networks

Hidden physics models

AlphaFold

“Mining gold” from implicit models

Hamiltonian/ Lagrangian neural networks

Physics-informed neural networks

Physics-informed Fourier neural operators

Physics-informed DeepONets

PINNs on meshes

Algorithm unrolling

Universal differential equations

Learned sub-grid processes

”Solver-in-the-loop”

Learned gradient descent

Adversarial regularisersSource: My PhD thesis: Physics-informed machine learning: from concepts 
to real-world applications read it here: tinyurl.com/mw39wdps
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A wide plethora of techniques

Traditional 
workflowsNaive ML

Constraining physical quantities
Encoding conservation laws
Auxiliary tasks

Encoding governing equations

Architecture

Loss function

Hybrid approachesAdding physical variables
Encoding symmetries

Physics-inspired NAS
ML inspired by Koopman theory
Physically constrained GPs

Residual modelling
Differentiable physics

Neural differential equations
In-the-loop methods

Source: My PhD thesis: Physics-informed machine learning: from concepts 
to real-world applications read it here: tinyurl.com/mw39wdps



© Ben Moseley 2022

Source: My PhD thesis: Physics-informed machine learning: from concepts 
to real-world applications read it here: tinyurl.com/mw39wdps
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Loss function:
Physics-informed neural networks

Data 
loss

Physics 
loss
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“Naive” neural network

Source: ”So, what is a physics-informed neural 
network?” (benmoseley.blog/)
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“Naive” neural network Physics-informed neural network

Raissi et al (2019). Physics-informed neural networks: A deep learning framework for solving 
forward and inverse problems involving nonlinear partial differential equations. 
Lagaris et al (1998). Artificial neural networks for solving ordinary and partial differential equations.Source: ”So, what is a physics-informed neural 

network?” (benmoseley.blog/)
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PINNs for simulation
Ground truth FD

Moseley, B., Markham, A., & Nissen-Meyer, T. (2020). Solving the wave equation with physics-informed deep learning. ArXiv

Velocity model
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PINNs for simulation

PINN

“Naïve” NN

Ground truth FD

Difference (NN)

Difference (PINN)

Moseley, B., Markham, A., & Nissen-Meyer, T. (2020). Solving the wave equation with physics-informed deep learning. ArXiv

NN architecture:
Fully-connected, 10 layers, 512 
hidden channels

Training time: ~3 hours

Velocity model
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PINNs for inversion
Shukla K et al, Physics-Informed Neural 
Network for Ultrasound Nondestructive 
Quantification of Surface Breaking Cracks, 
Journal of Nondestructive Evaluation (2020)

● Simultaneously learn velocity model too!
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Try PINNs for yourself!

github.com/benmoseley
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Architecture:
ML inspired by Koopman theory
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Roughly: Koopman theory states that any 
(potentially nonlinear) dynamical system 
can be represented in terms of an infinite-
dimensional linear operator

Loss = reconstruction loss + 
prediction loss

Lusch, B., Kutz, J. N., & Brunton, S. L. (2018). Deep learning for universal linear 
embeddings of nonlinear dynamics. Nature Communications
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Roughly: Koopman theory states that any 
(potentially nonlinear) dynamical system 
can be represented in terms of an infinite-
dimensional linear operator

Geneva, N., & Zabaras, N. (2022). Transformers for modeling physical systems. Neural 
Networks
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Hybrid approaches:
Differentiable physics
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Key ideas:

1. Auto-differentiation is very powerful!!

2. We can write (nearly) any traditional 
scientific algorithm in a differentiable 
programming language

3. And insert and train ML components / 
flexible parameters anywhere inside 
them

Differentiable physics
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Low fidelity solver

High fidelity solver
“Ground truth”

Um, K., Brand, R., Fei, Y., Holl, P., & Thuerey, N. (2020). Solver-in-the-loop: Learning 
from differentiable physics to interact with iterative PDE-solvers. Advances in 
Neural Information Processing Systems
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Low 
fidelity 

solver step

CNN 
correction

Low 
fidelity 

solver step

CNN 
correction

…

Traditional algorithm ML module

Um, K., Brand, R., Fei, Y., Holl, P., & Thuerey, N. (2020). Solver-in-the-loop: Learning 
from differentiable physics to interact with iterative PDE-solvers. Advances in 
Neural Information Processing Systems
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Um, K., Brand, R., Fei, Y., Holl, P., & Thuerey, N. (2020). Solver-in-the-loop: Learning 
from differentiable physics to interact with iterative PDE-solvers. Advances in 
Neural Information Processing Systems

Low 
fidelity 

solver step

CNN 
correction

Low 
fidelity 

solver step

CNN 
correction

Match to ground truth

Match to ground truth

…

Traditional algorithm ML module

Differentiate through entire algorithm to train CNN, end-to-end
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Low fidelity solver

Solver-in-the-loop

High fidelity solver
“Ground truth”

Um, K., Brand, R., Fei, Y., Holl, P., & Thuerey, N. (2020). Solver-in-the-loop: Learning 
from differentiable physics to interact with iterative PDE-solvers. Advances in 
Neural Information Processing Systems
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Many SciML works focus on solving toy/simplified problems to validate their techniques

How well do SciML techniques scale to complex, real-world problems?

Image credits: 
Lawrence Berkeley 
National Laboratory 

/ NOAA / NWS / 
Pacific Tsunami 
Warning Center

Our research:

Traditional scientific methods 
struggle to scale when:

Adding more complex phenomena 
(multi-scale, multi-physics)

Increasing the domain size / 
adding higher frequencies (high 
computational cost)

Incorporating real, noisy and 
sparse data
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Scaling to large problems: The spectral bias issue

Rahaman, N., et al, On the spectral bias of neural networks. 36th International 
Conference on Machine Learning, ICML (2019)

• NNs prioritise learning lower frequency functions 
first

• Under certain assumptions can be proved via 
neural tangent kernel theory
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A motivating problem

321 free 
parameters

66,433 free 
parameters
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Multiple related issues when scaling PINNs to large domains:

• As the domain increases:
• The complexity of the solution increases;
• Requiring a larger neural network (more free parameters);
• And more training points to sample the domain;
• -> Leading to a harder optimisation problem.

• As the frequency increases;
• The neural network takes longer to converge (spectral bias).

• As the size of the network, number of training points, and convergence time 
grows, the computational resources grows significantly

Key scaling issues
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• Use domain decomposition, individual subdomain 
normalisation and flexible training schedules to allow 
PINNs to scale to large domains

Finite basis physics-informed neural networks (FBPINNs)

Window function Subdomain network Separate subdomain normalisationhttps://arxiv.org/abs/2107.07871
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• Subdomain network size: 2 layers, 16 hidden units
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• (2+1)D time-dependent wave 
equation

github.com/benmoseley/FBPINNs
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Shackleton crater, lunar south pole

21 km

Lunar south pole

Credits: NASA Scientific Visualization Studio / QuickMap / LROC

Peering into shadows on the Moon with SciML
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Wapowski crater

Credits: LROC / GSFC / ASU
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Digital 
Numbers
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Lunar Reconnaissance Orbiter Camera Smartphone

= "($ ∗ [ ]) + + ++ +

Building on:
Humm, D. C. et al (2016) Flight Calibration of the LROC Narrow Angle Camera. Space Science Reviews
Robinson, M. S. et al (2010) Lunar reconnaissance orbiter camera (LROC) instrument overview. Space Science Reviews

Nonlinearity 
response 

Flatfield 
correction

Physical noise model
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CCD 
environmental 
meta data

!"# $− ÷ '

DestripeNet PhotonNet

−

= !(' ∗ [ ]) + + ++ +

Nonlinearity 
response 

Flatfield 
correction Real samplesSynthetically 

added

Synthetically 
added

Synthetically 
added

Synthetically 
added

Real samples Real samplesReal samples



© Ben Moseley 2022

Comparison to other methods
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VIPER Lunar rover
Credits: NASA Ames/Daniel Rutter
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Takeaways

• SciML is a blossoming field of research

• There are a plethora of different SciML techniques…

• …which range in the way scientific constraints are added, and their intended scientific task

• Scaling SciML techniques to more complex, multi-scale, multi-physics problems remains an 

exciting field of research!

• Check out my blog/ GitHub for more!
benmoseley.blog github/benmoseley


