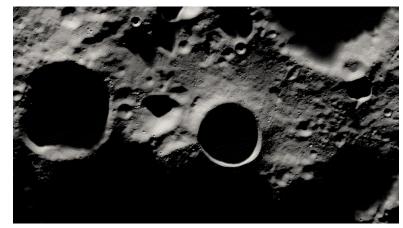
Scientific machine learning: ways to incorporate scientific principles into ML

Ben Moseley

Postdoctoral fellow, ETH AI Center / ETH Computational and Applied Mathematics Laboratory

Talk overview

- What is scientific machine learning (SciML)?
- Ways to incorporate scientific principles into ML
- Our research: scaling SciML techniques to complex, real-world problems



Credits: NASA Scientific Visualization Studio / QuickMap / LROC

Later in the talk: peering into shadows on the Moon using SciML

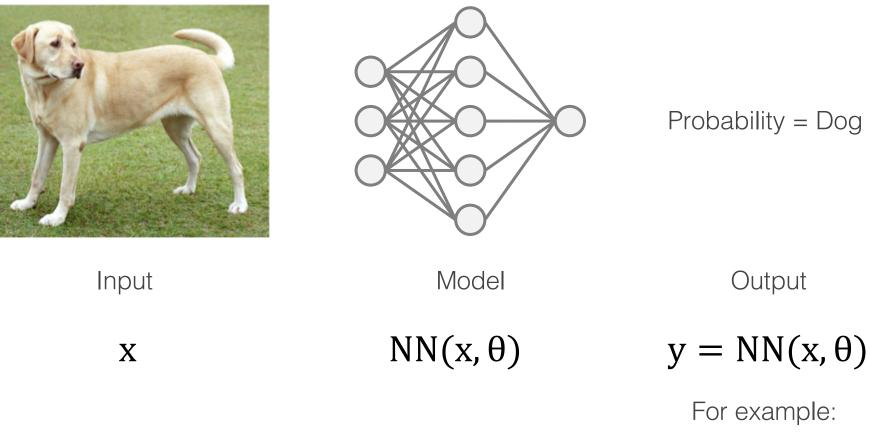
Talk overview

- What is scientific machine learning (SciML)?
- Ways to incorporate scientific principles into ML
- Our research: scaling SciML techniques to complex, real-world problems

What is deep learning?

Trained using:

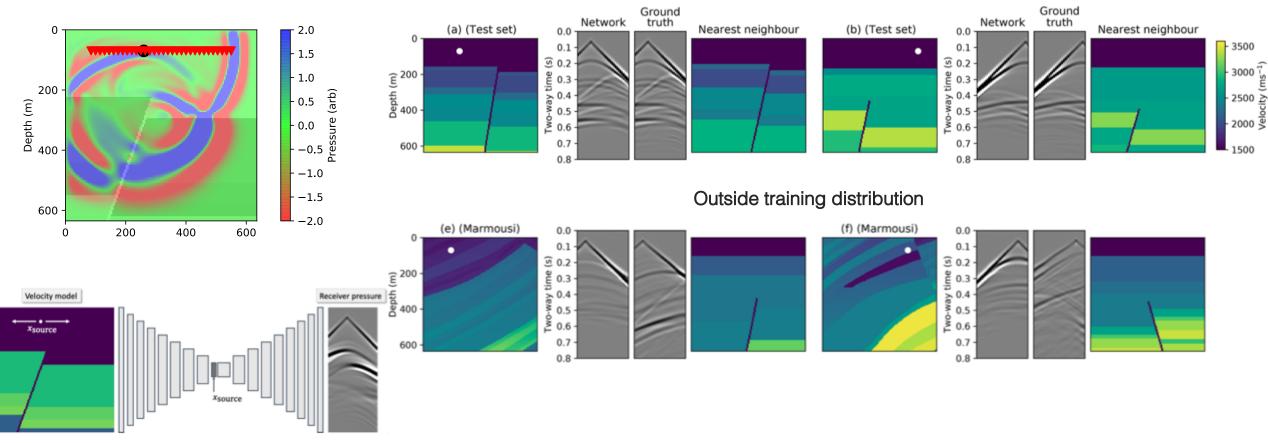
- (Stochastic) gradient descent
- An appropriate loss function
- Many (millions of) training examples



The challenge of generalisation

Labrador retriever 52% Chesapeake Bay retriever 7% golden retriever 5% Canis dingo 4% bloodhound, sleuthhound 3% laboratory coat 40% jeweler's loupe 8% English foxhound 6% soccer ball 4% neck brace 3%

"Naive" application of ML



Within training distribution

Moseley, B., Nissen-Meyer, T., & Markham, A. (2020). Deep learning for fast simulation of seismic waves in complex media. Solid Earth

Scientific machine learning (SciML)

Major problem

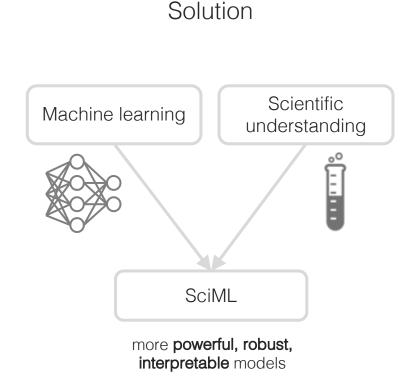
Despite big breakthroughs in science + AI

Naively using deep learning for scientific tasks usually leads to:

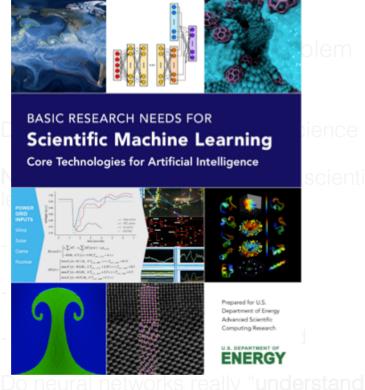
- Lack of interpretability
- Poor generalization
- Lots of training data required

Do neural networks really "**understand**" the scientific tasks they are being applied to?

A good scientific theory = makes novel predictions



Scientific machine learning (SciML)



they are being applied to?

The second secon

Physics-informed neural networks: # citations (reproduced from Cuomo et al, 2022)

National Science Foundation announces MIT-led Institute for Artificial Intelligence and Fundamental Interactions

IAIFI will advance physics knowledge — from the smallest building blocks of nature to the largest structures in the universe — and galvanize AI research innovation.

Laboratory for Nuclear Science August 26, 2020

The U.S. National Science Foundation (NSF) announced today an investment of more than \$100 million to establish five artificial intelligence (AI) institutes, each receiving roughly \$20 million over five years. One of these, the NSF AI Institute for Artificial Intelligence and Fundamental Interactions (IAIFI), will be led by MIT's Laboratory for Nuclear Science (LNS) and become the intellectual home of more than 25 physics and AI senior researchers at MIT and Harvard, Northeastern, and Tufts universities.

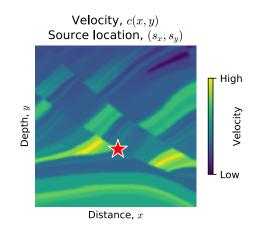
A good scientific theory = makes novel predictions

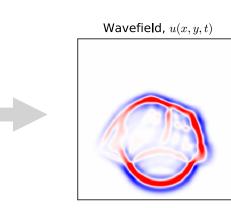
Baker, N. et al (2019). Workshop Report on Basic Research Needs for Scientific Machine Learning: Core Technologies for Artificial Intelligence.

Talk overview

- What is scientific machine learning (SciML)?
- Ways to incorporate scientific principles into ML
- Our research: scaling SciML techniques to complex, real-world problems

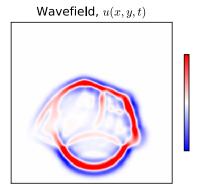
Typical SciML tasks



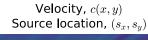


Forward simulation

Estimate wavefield u(x, y, t)Given velocity c(x, y)and source location (s_x, s_y)



Wavefield, u(x, y, t)Velocity, c(x, y)Source location, (s_x, s_y)



Inversion

Estimate velocity c(x, y)and source location (s_x, s_y) Given wavefield u(x, y, t)

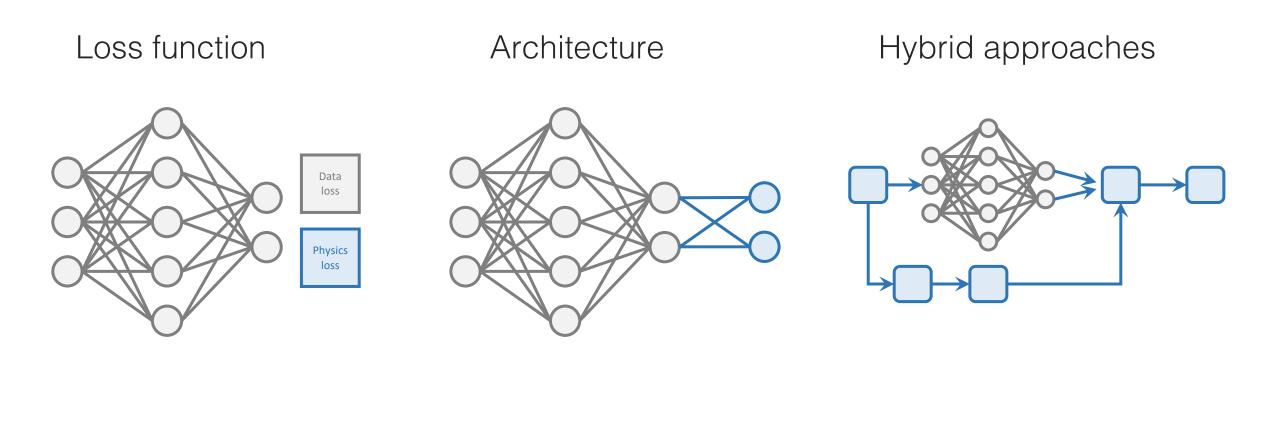
Wave equation

 $\nabla^2 u - \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2} = f$

Equation discovery

Estimate governing equation Given wavefield u(x, y, t), velocity c(x, y), and source location (s_x, s_y)

Ways to incorporate scientific principles into machine learning

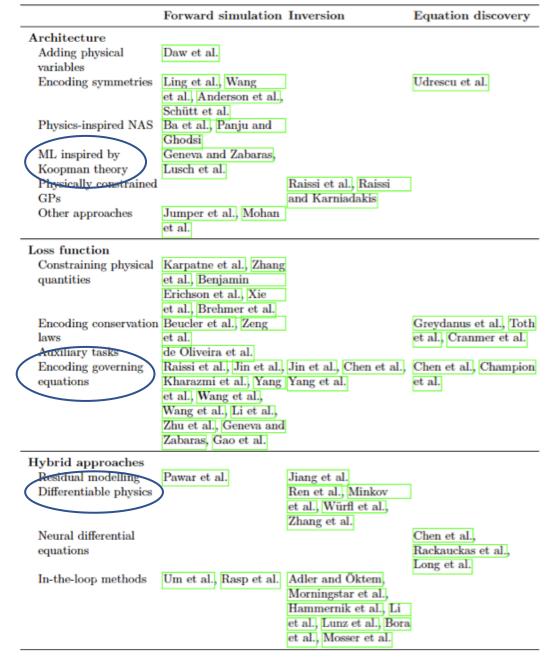


	Forward simulation Inv	version	Equation discovery	
Architecture				Al Feynman
Adding physical	Daw et al.			
variables	Ling et al Wang		The second stall	Coverient neutral networks
Encoding symmetries	Ling et al., Wang et al., Anderson et al.,		Udrescu et al.	Covariant neural networks
	Schütt et al.			
Physics-inspired NAS	Ba et al., Panju and			Hidden physics models
i nyaco-mapireu 1445	Ghodsi			Thedelio medelo
ML inspired by	Geneva and Zabaras,			
Koopman theory	Lusch et al.			AlphaFold
Physically constrained		issi et al., Raissi		
GPs		Karniadakis		
Other approaches	Jumper et al., Mohan			"Mining gold" from implicit models
	et al.			
Loss function				Hamiltonian/ Lagrangian neural networ
Constraining physical	Karpatne et al., Zhang			
quantities	et al., Benjamin			
quantities	Erichson et al., Xie			Physics-informed neural networks
	et al., Brehmer et al.			,
Encoding conservation			Greydanus et al., Toth	
laws	et al.		et al., Cranmer et al.	Physics-informed Fourier neural operate
Auxiliary tasks	de Oliveira et al.			
Encoding governing	Raissi et al., Jin et al., Jin	et al., Chen et al.,	Chen et al., Champion	Dhusias informed DeepONate
equations	Kharazmi et al., Yang Yan		et al.	Physics-informed DeepONets
	et al., Wang et al.,	<u> </u>		
	Wang et al., Li et al.,			PINNs on meshes
	Zhu et al., Geneva and			
	Zabaras, Gao et al.			
Hybrid approaches				Algorithm unrolling
	Pawar et al. Jian	ng et al.		
Differentiable physics		n et al., Minkov		Liniu areas differential and there
1.00		al., Würfl et al.,		Universal differential equations
		ang et al.		
Neural differential			Chen et al.,	Learned sub-grid processes
equations			Rackauckas et al.,	Ecamod oub grid processes
			Long et al.	
In-the-loop methods		ler and Öktem,		"Solver-in-the-loop"
		rningstar et al.,		'
		mmernik et al., Li		
		al., Lunz et al., Bora		Learned gradient descent
	et a	al., Mosser et al.		
oo. Mu DhD thoo	ia: Dhuaiaa informa	od mochina l	corning: from concents	Adversarial regularisers
•	•		earning: from concepts	
al-world applicat	ions read	d it here: tinyı	url.com/mw39wdps	
			© Ben Mosele	

A wide plethora of techniques

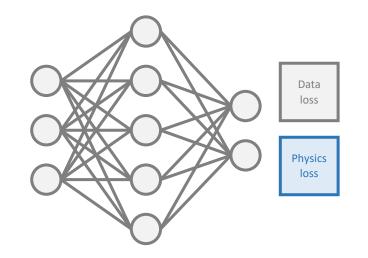
Naive ML	Constraining physical quantities Encoding conservation la Auxiliary tasks Encoding g	aws Ioverning equations		
	Loss function		Residual modelling Differentiable physics	
		Neural dif	fferential equations	
	In-the-loop methods			Traditional
		ymmetries Physics-inspired NAS d by Koopman theory constrained GPs	Hybrid approaches	workflows
	Architecture			
				>

Source: My PhD thesis: Physics-informed machine learning: from concepts to real-world applications read it here: tinyurl.com/mw39wdps © Ben Moseley 2022



Source: My PhD thesis: Physics-informed machine learning: from concepts to real-world applications read it here: tinyurl.com/mw39wdps © Ben Moseley 2022

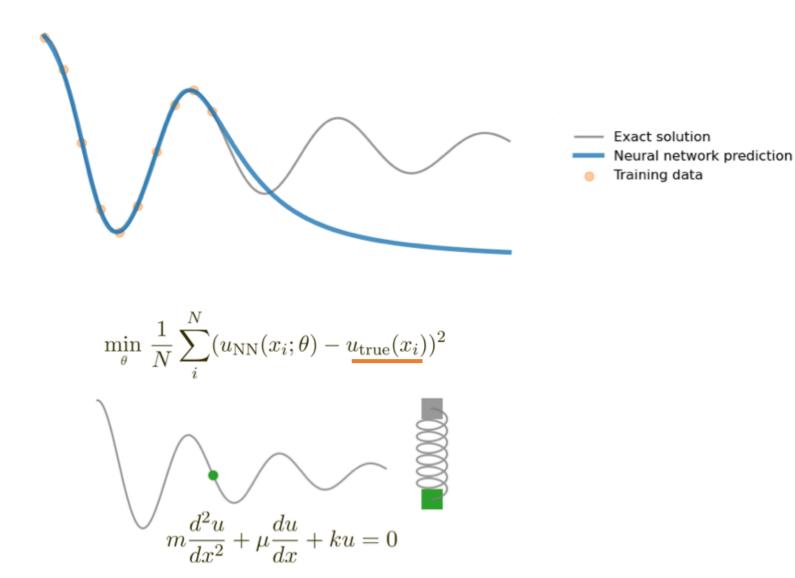
Loss function: Physics-informed neural networks



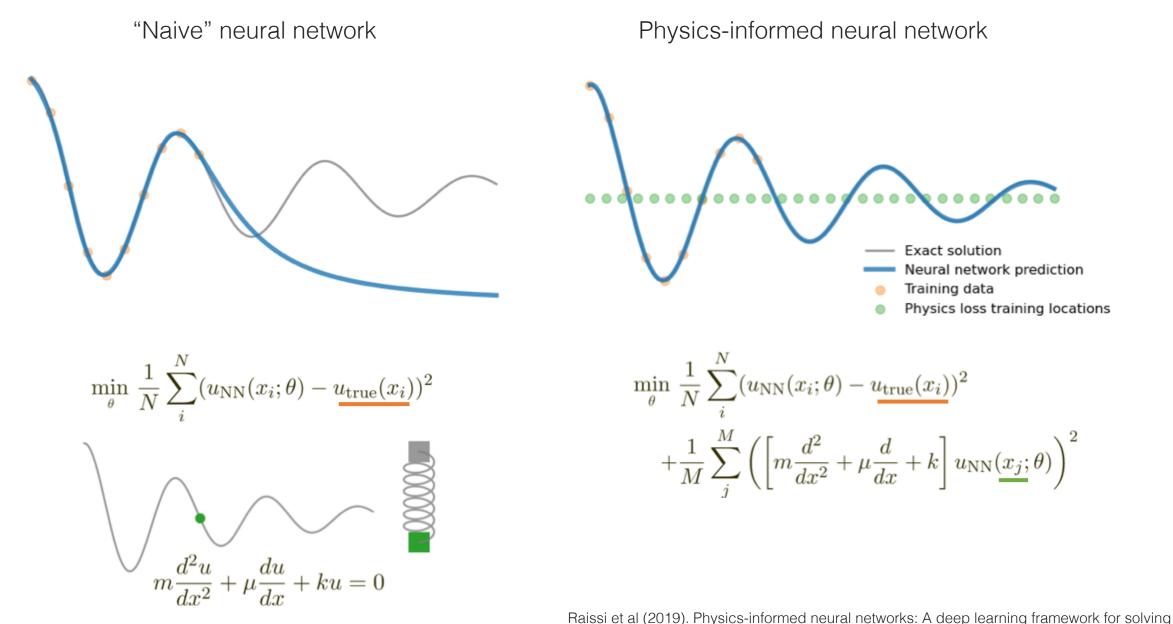
"Naive" neural network

$$\min_{\theta} \frac{1}{N} \sum_{i}^{N} (u_{\text{NN}}(x_i; \theta) - \underline{u_{\text{true}}(x_i)})^2$$

"Naive" neural network



Source: "So, what is a physics-informed neural network?" (**benmoseley.blog/**)

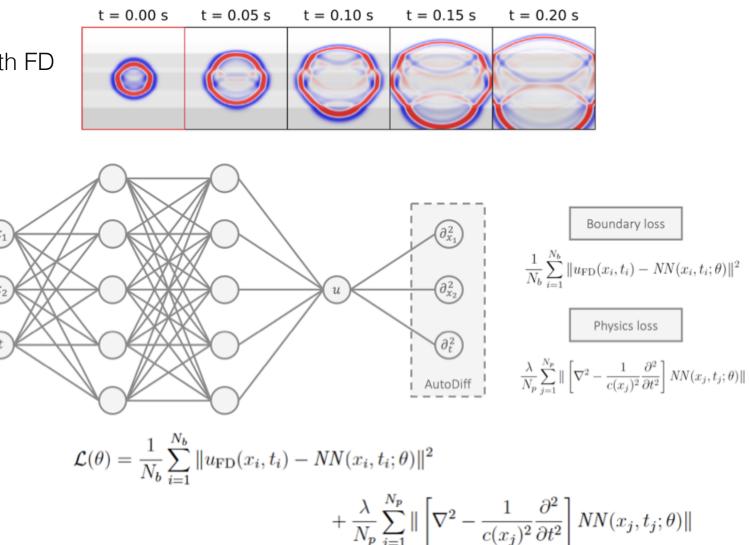


Source: "So, what is a physics-informed neural network?" (**benmoseley.blog/**)

forward and inverse problems involving nonlinear partial differential equations. Lagaris et al (1998). Artificial neural networks for solving ordinary and partial differential equations.

PINNs for simulation

Ground truth FD



Moseley, B., Markham, A., & Nissen-Meyer, T. (2020). Solving the wave equation with physics-informed deep learning. ArXiv © Ben Moseley 2022

Velocity model

0.5

Distance (km)

1.0

- 3500 -- 3000 2 - 2500 3

2000

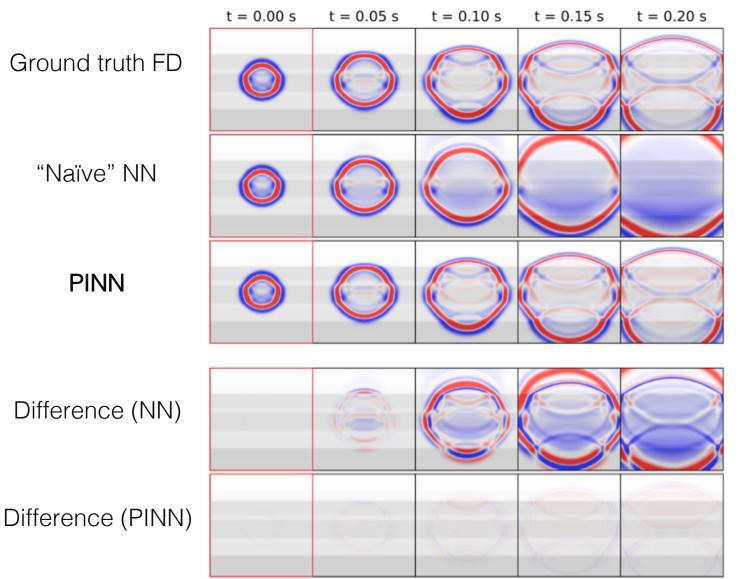
1.5

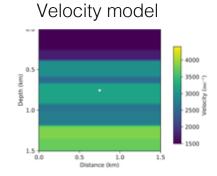
0.5

1.0

1.5 ÷ 0.0

PINNs for simulation





NN architecture: Fully-connected, 10 layers, 512 hidden channels

Training time: ~3 hours

Moseley, B., Markham, A., & Nissen Meyer 2T. (2020). Solving the wave equation with physics-informed deep learning. ArXiv

PINNs for inversion

Shukla K et al, Physics-Informed Neural Network for Ultrasound Nondestructive Quantification of Surface Breaking Cracks, Journal of Nondestructive Evaluation (2020)

10

10

 $\cdot 10$

5

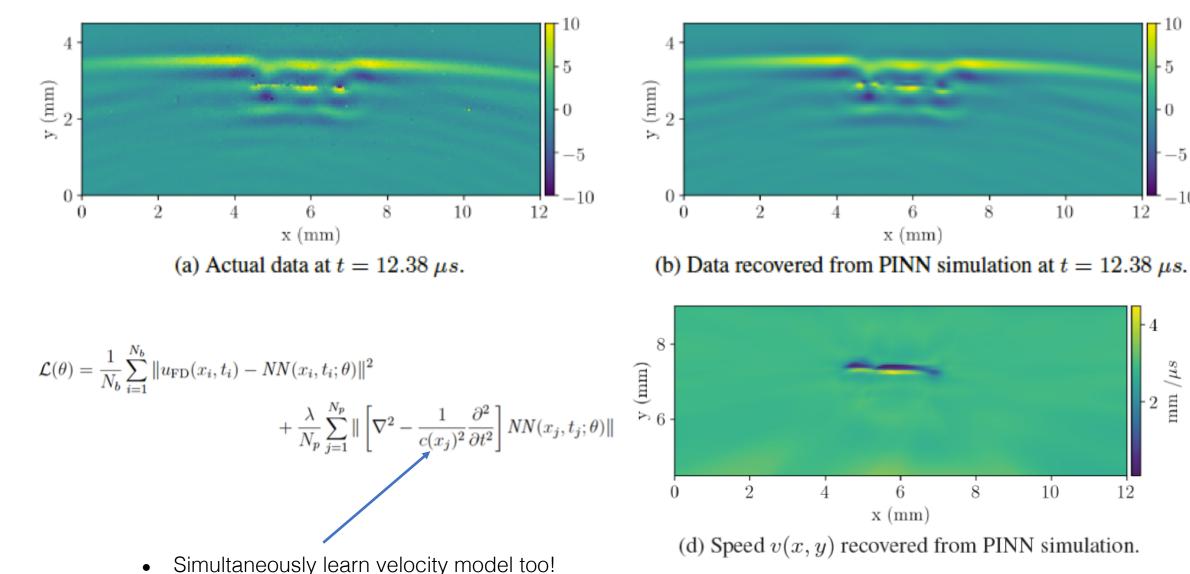
-5

-10

 $\frac{s \eta}{2}$ mm

12

12

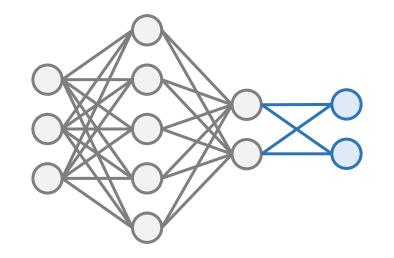


Try PINNs for yourself!

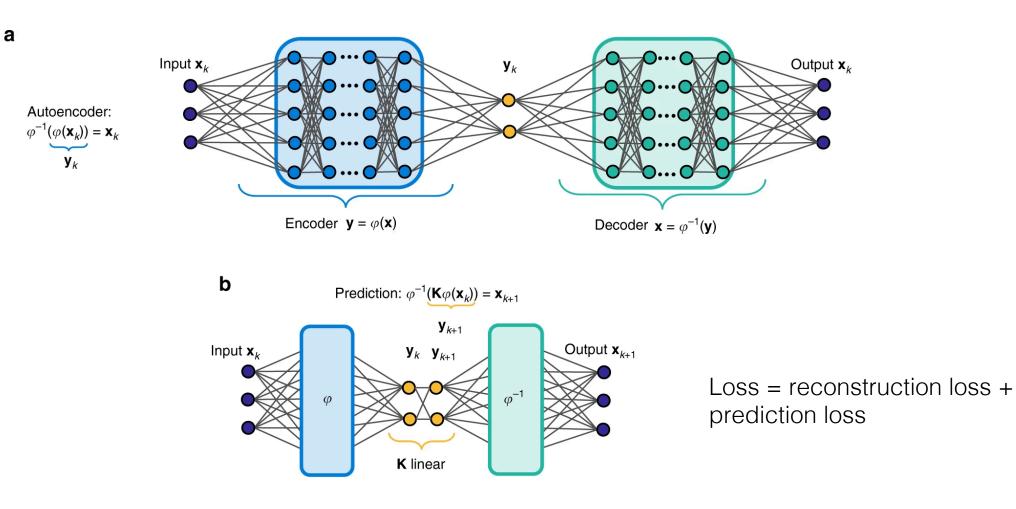
benmoseley /	harmonic-oscillator-pinn Public			. On Notifications ♀ Fork 47 ☆ Star 132 · · · · · · · · · · · · · · · · · · ·	
<> Code ⊙ Issue	es 🚺 🏥 Pull requests 💿 Actions	🗄 Projects 🛈 Security 🗠 Insig	hts		
	🐉 main 🗸 🧗 2 branches 🔊 0 tag	S	Go to file Code -	About	
	benmoseley Update README.md		□ 1 100c5d9 on 28 Aug 2021 3 commits	Code accompanying my blog post: So, what is a physics-informed neural network?	
	igures	update	13 months ago	D Readme	
	Harmonic oscillator PINN.ipynb	update	13 months ago	δ]δ MIT license	
		Initial commit	13 months ago	☆ 132 stars	
	C README.md	Update README.md	13 months ago	 ⊙ 3 watching ♀ 47 forks 	
	README.md				
		Releases			
	harmonic-oscill	No releases published			
	Code accompanying my blog post:	So, what is a physics-informed neural			
			Packages No packages published		
			Training step: 6600		
			Exact solution	Languages	
			Neural network prediction		
			 Training data Physics loss training locations 	Jupyter Notebook 100.0%	
		-			

github.com/benmoseley

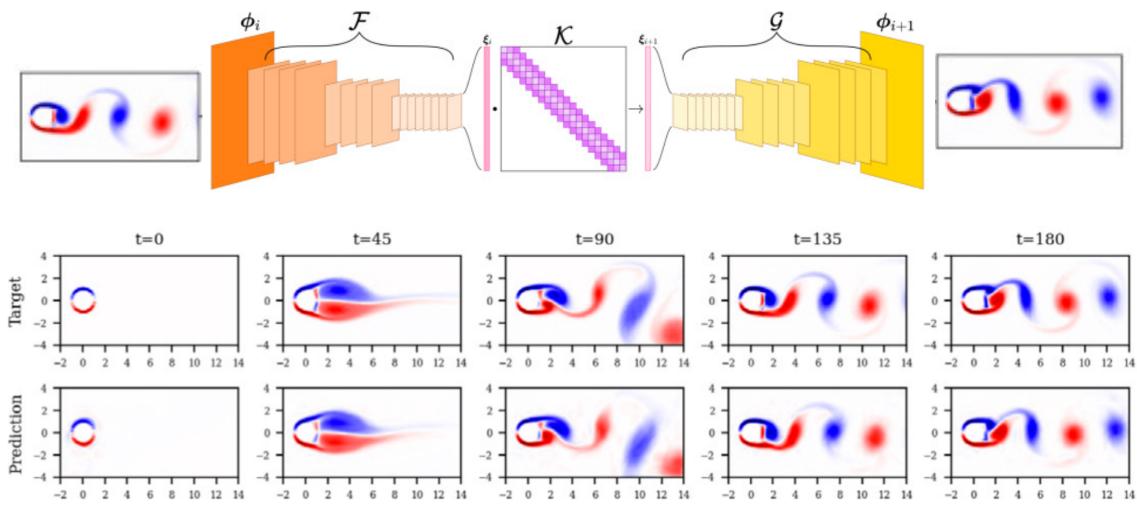
Architecture: ML inspired by Koopman theory



Roughly: Koopman theory states that any (potentially nonlinear) dynamical system can be represented in terms of an infinitedimensional linear operator Lusch, B., Kutz, J. N., & Brunton, S. L. (2018). Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications

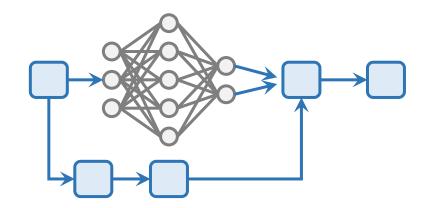


Roughly: Koopman theory states that any (potentially nonlinear) dynamical system can be represented in terms of an infinitedimensional linear operator Geneva, N., & Zabaras, N. (2022). Transformers for modeling physical systems. Neural Networks



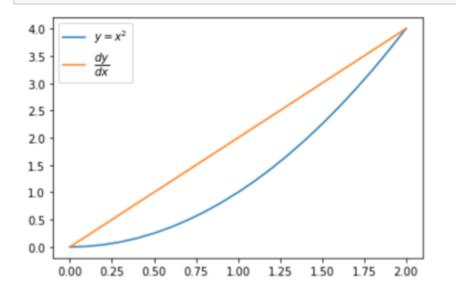
S DELLIVIUSEIEY ZUZZ

Hybrid approaches: Differentiable physics



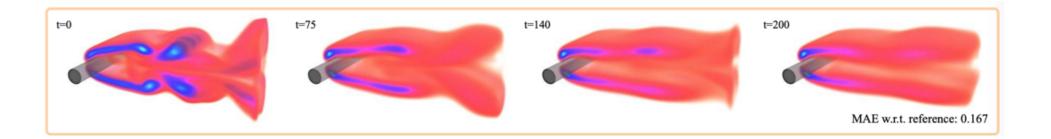
Differentiable physics

```
In [1]: import torch
x = torch.arange(0,2.1,0.1, requires_grad=True)
y = x**2
y.backward(torch.ones_like(x))
import matplotlib.pyplot as plt
plt.plot(x.detach(), y.detach(), label="$y=x^2$")
plt.plot(x.detach(), x.grad.detach(), label="$\dfrac{dy}{dx}$")
plt.legend()
plt.show()
```



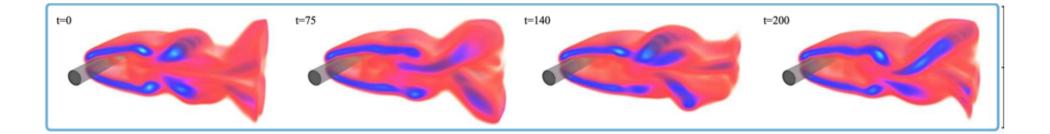
Key ideas:

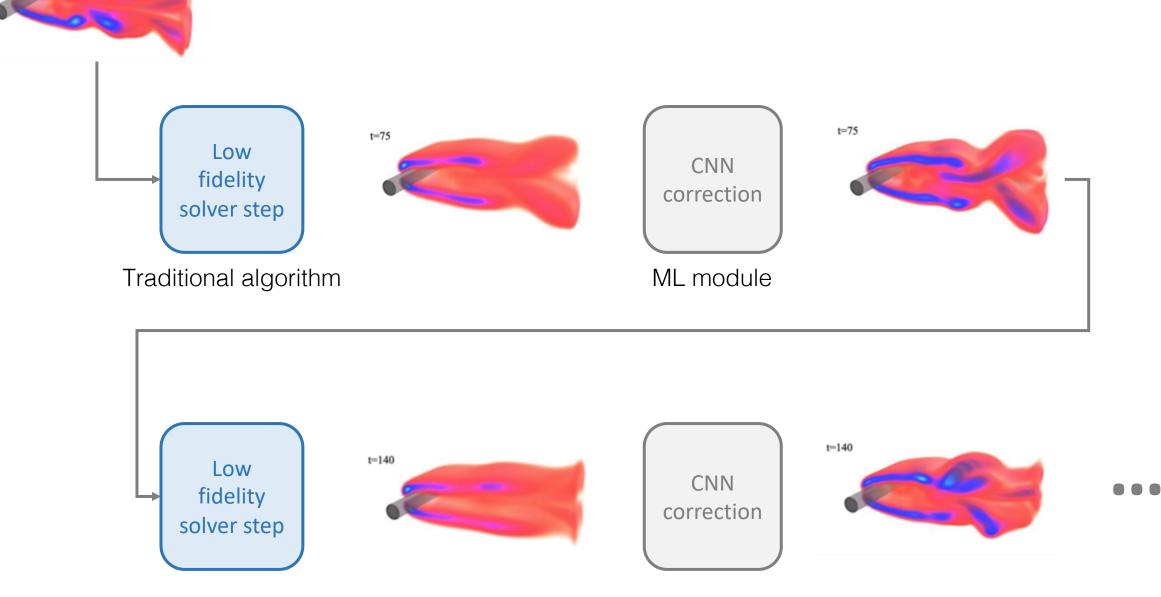
- 1. Auto-differentiation is very powerful!!
- 2. We can write (nearly) any traditional scientific algorithm in a differentiable programming language
- 3. And insert and train ML components / flexible parameters anywhere inside them



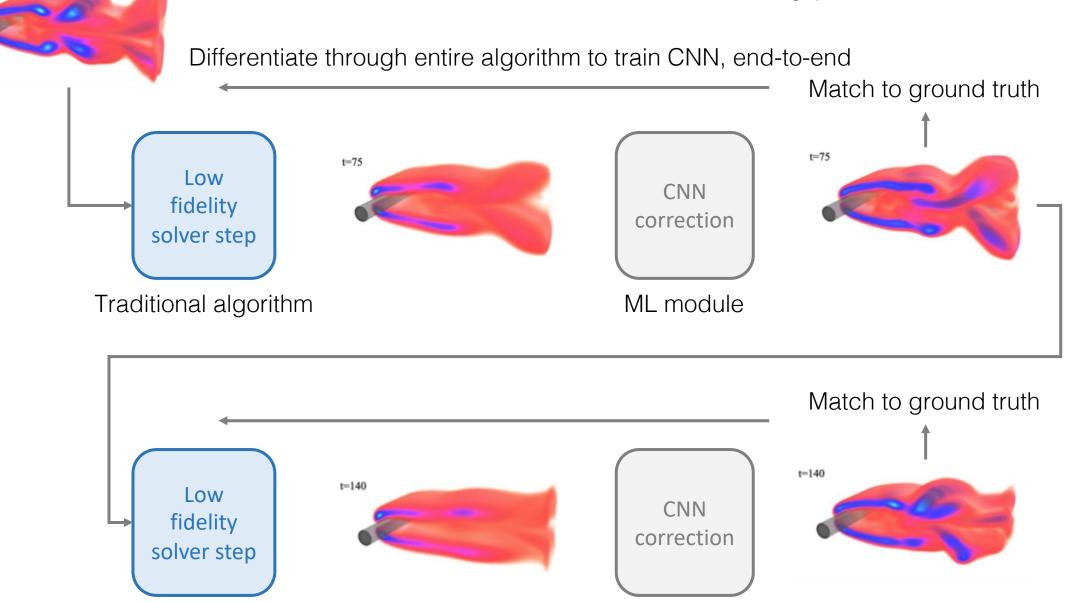
Low fidelity solver

High fidelity solver "Ground truth"

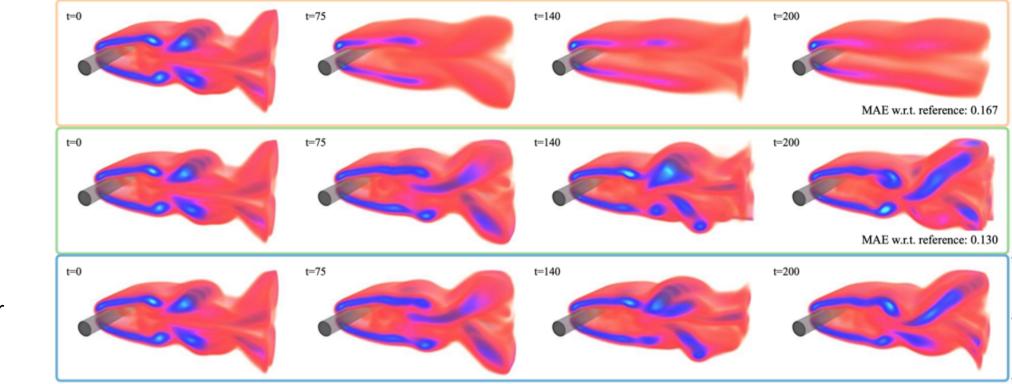




t=0



t=0



Low fidelity solver

Solver-in-the-loop

High fidelity solver "Ground truth"

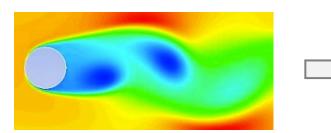
Talk overview

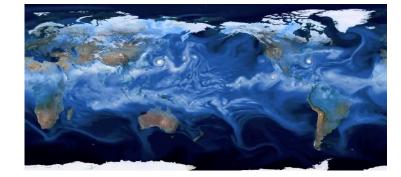
- What is scientific machine learning (SciML)?
- Ways to incorporate scientific principles into ML
- Our research: scaling SciML techniques to complex, real-world problems

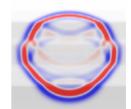
Our research:

Many SciML works focus on solving toy/simplified problems to validate their techniques

How well do SciML techniques scale to complex, real-world problems?







Traditional scientific methods struggle to scale when:

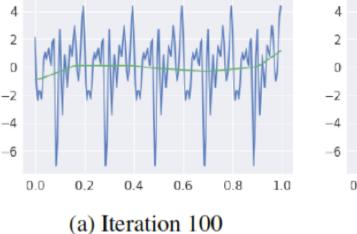
Adding more complex phenomena (multi-scale, multi-physics)

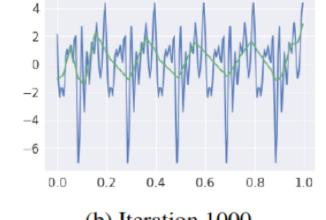
Increasing the domain size / adding higher frequencies (high computational cost)

Incorporating real, noisy and sparse data

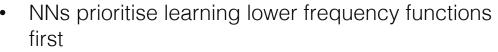
Image credits: Lawrence Berkeley National Laboratory / NOAA / NWS / Pacific Tsunami Warning Center

Scaling to large problems: The spectral bias issue



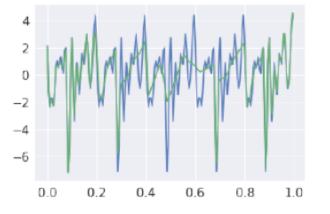


(b) Iteration 1000

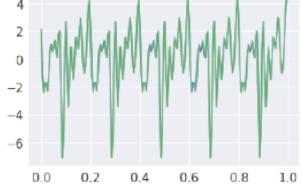


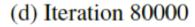
 Under certain assumptions can be proved via neural tangent kernel theory

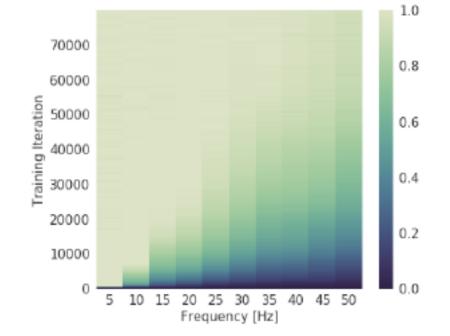
Rahaman, N., et al, On the spectral bias of neural networks. 36th International Conference on Machine Learning, ICML (2019)



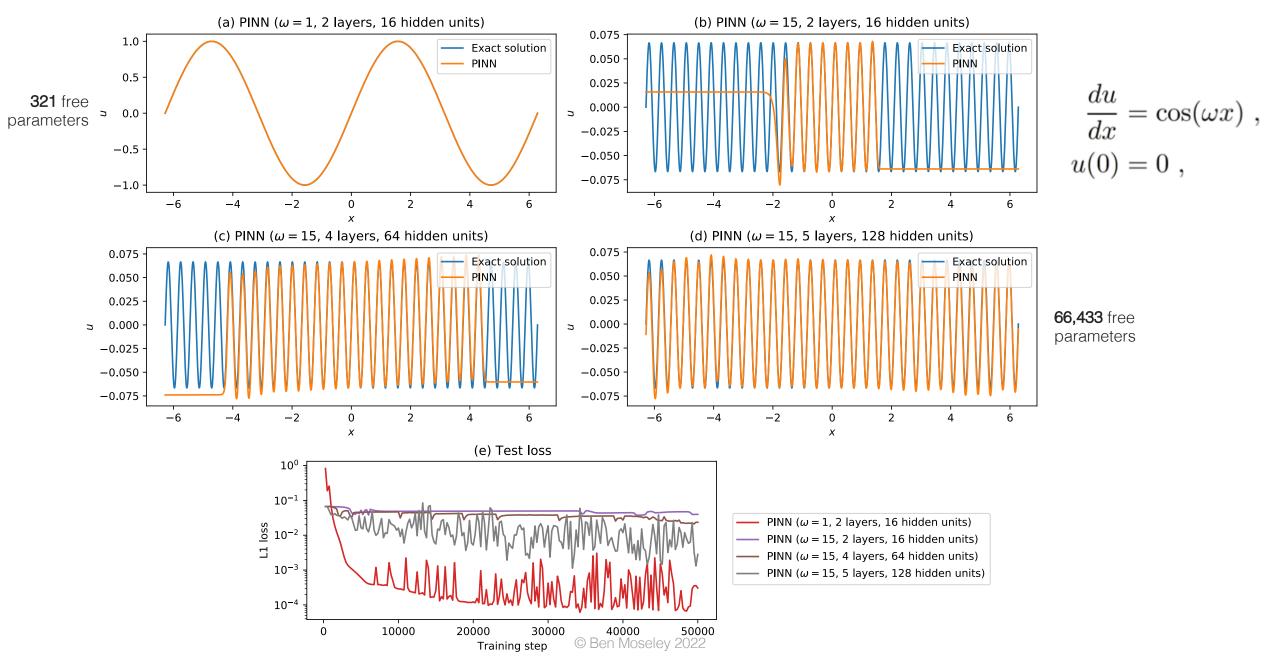
(c) Iteration 10000







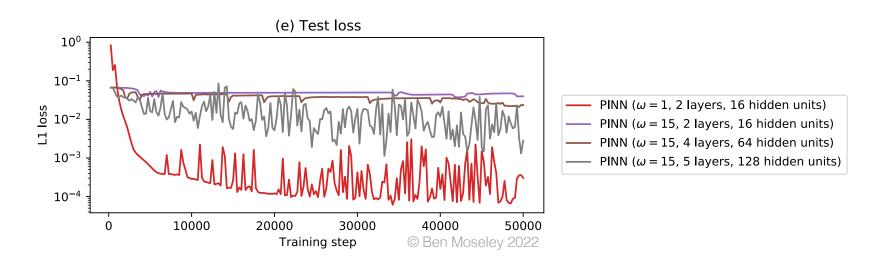
A motivating problem



Key scaling issues

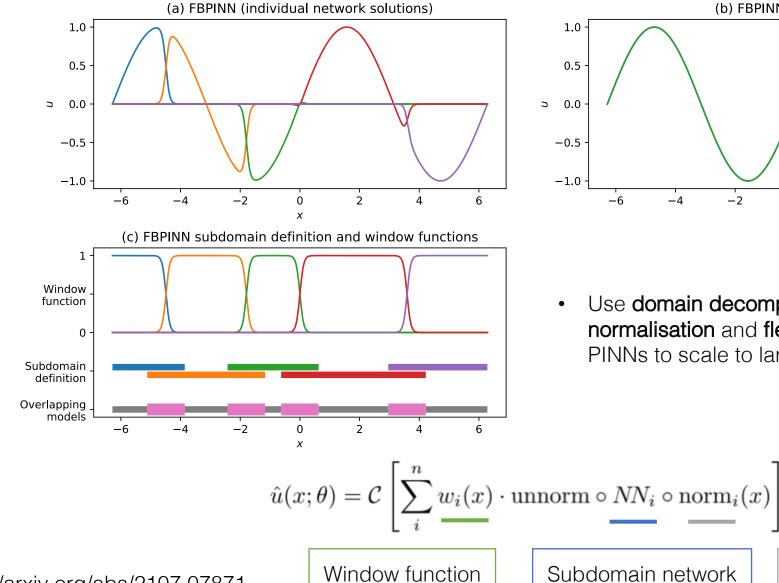
Multiple related issues when scaling PINNs to large domains:

- As the domain increases:
- The complexity of the solution increases;
- Requiring a larger neural network (more free parameters);
- And more training points to sample the domain;
- -> Leading to a harder optimisation problem.
- As the frequency increases;
- The neural network takes longer to converge (spectral bias).
- As the size of the network, number of training points, and convergence time grows, the computational resources grows significantly

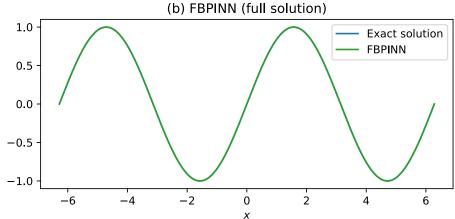


Finite basis physics-informed neural networks (FBPINNs)

© Ber<mark>t moseley 2022</mark>

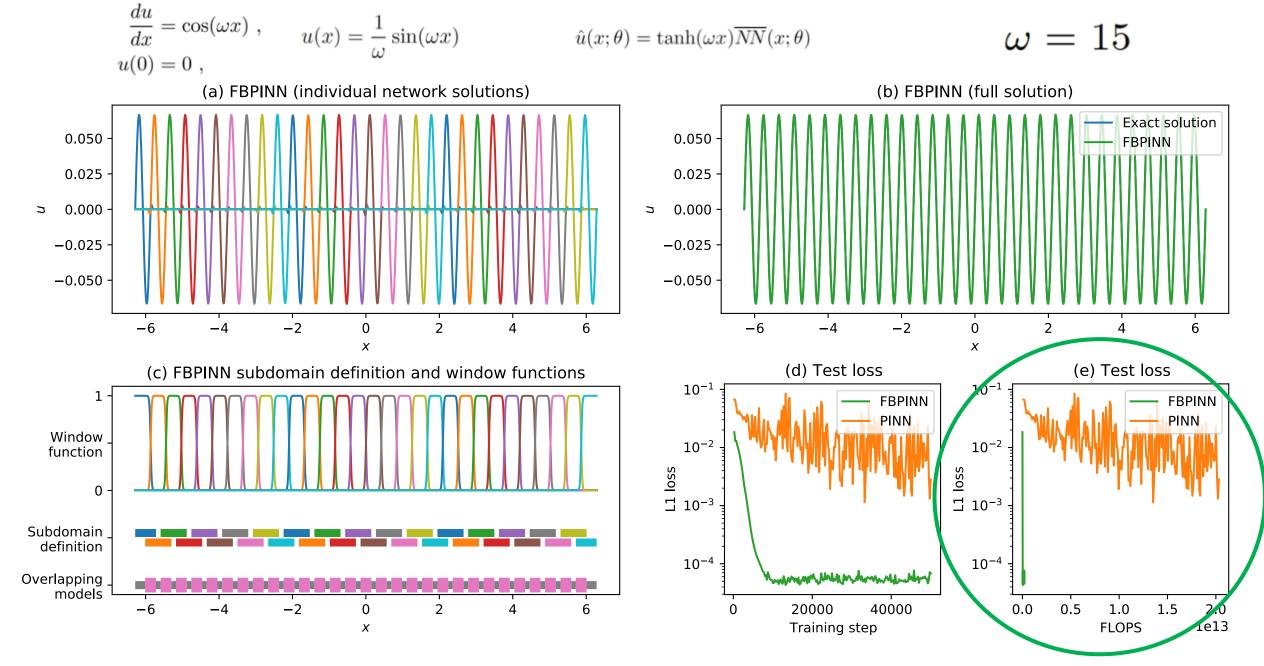


https://arxiv.org/abs/2107.07871

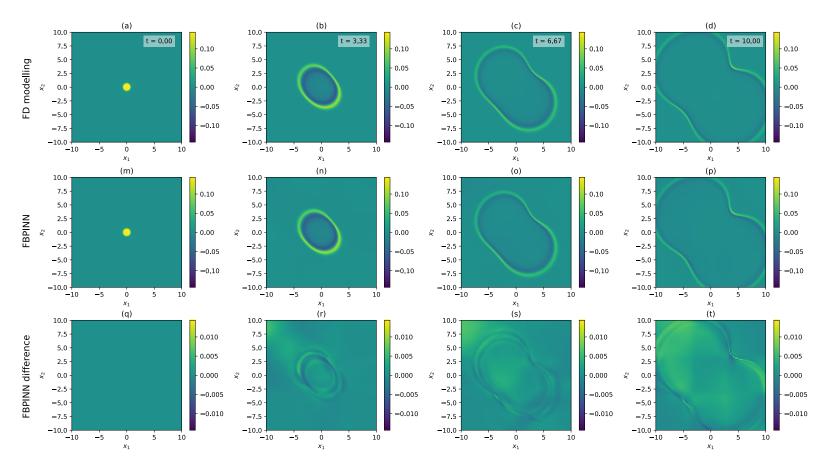


Use domain decomposition, individual subdomain normalisation and flexible training schedules to allow PINNs to scale to large domains

Separate subdomain normalisation



• Subdomain network size: 2 layers, 16 hidden units



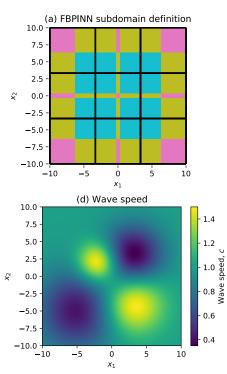
github.com/benmoseley/FBPINNs

© Ben Moseley 2022

• (2+1)D time-dependent wave equation

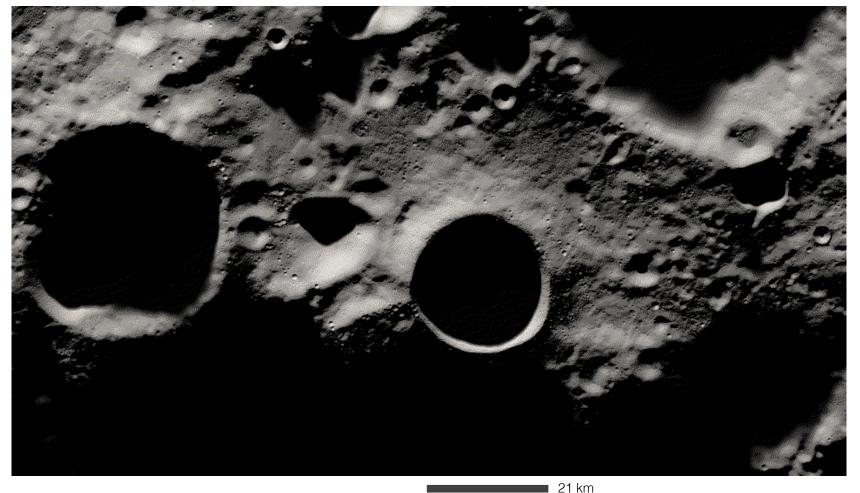
$$\begin{split} \nabla^2 - \frac{1}{c(x)^2} \frac{\partial^2}{\partial t^2} \bigg] \, u(x,t) &= 0 \ , \\ u(x,0) &= e^{-\frac{1}{2}(||x-\mu||/\sigma)^2} \ , \\ \frac{\partial u}{\partial t}(x,0) &= 0 \ , \end{split}$$

$$\hat{u}(x,t;\theta) = \phi(5(2-t/t_1)) e^{-\frac{1}{2}(||x-\mu||/\sigma)^2} + \tanh^2(t/t_1)\overline{NN}(x,t;\theta)$$

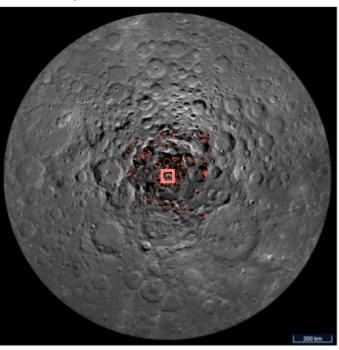


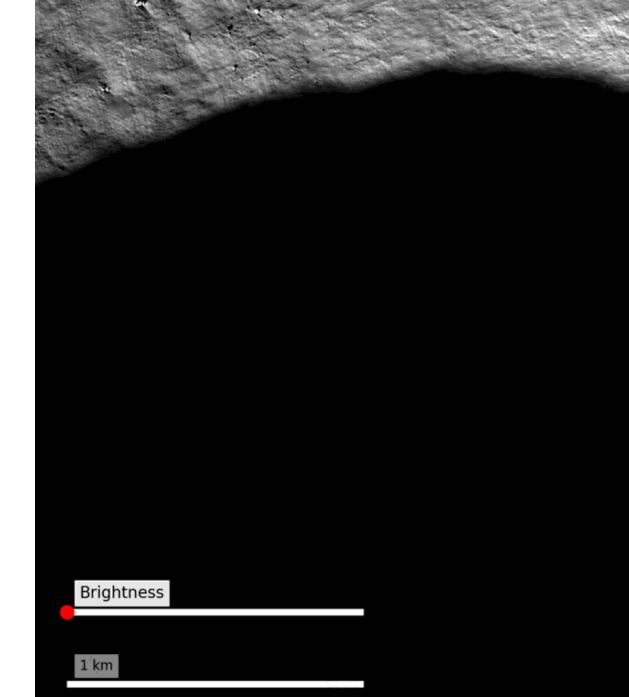
Peering into shadows on the Moon with SciML

Shackleton crater, lunar south pole

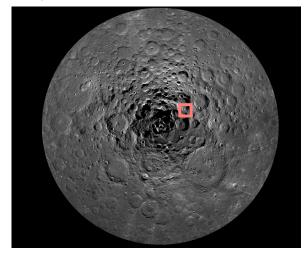


Lunar south pole

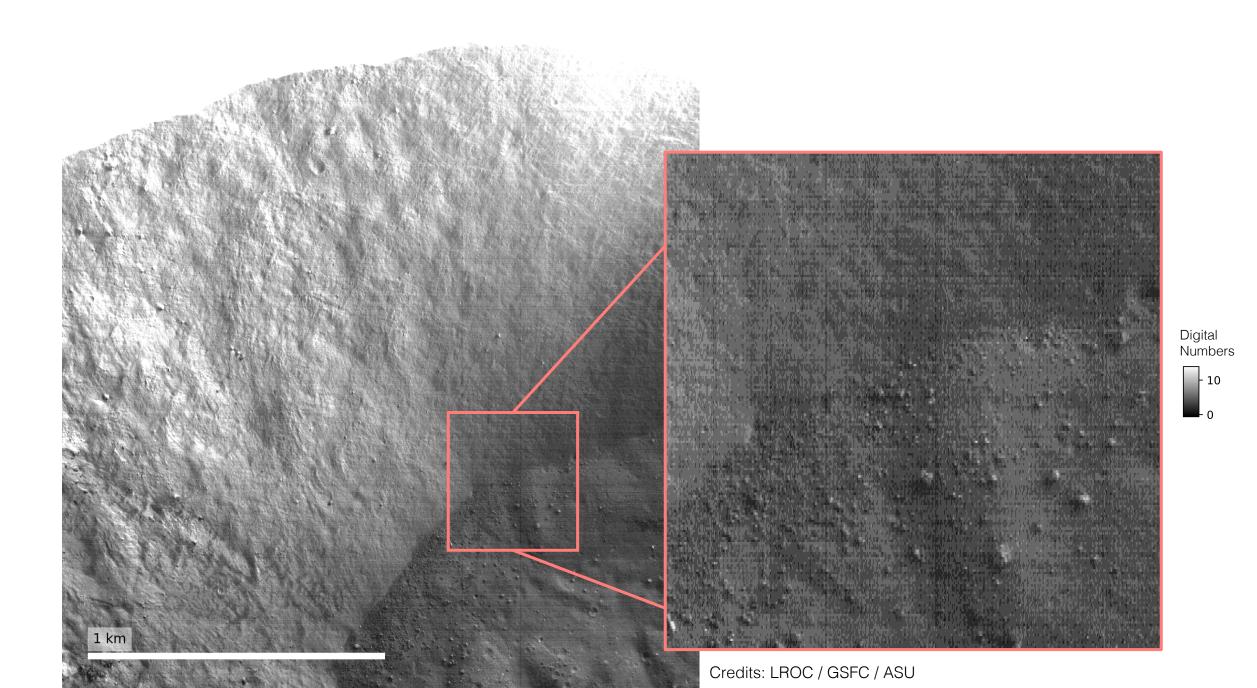




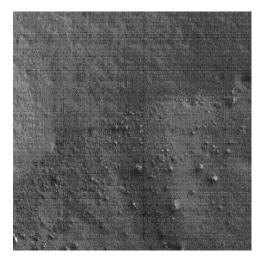
Wapowski crater



Credits: LROC / GSFC / ASU

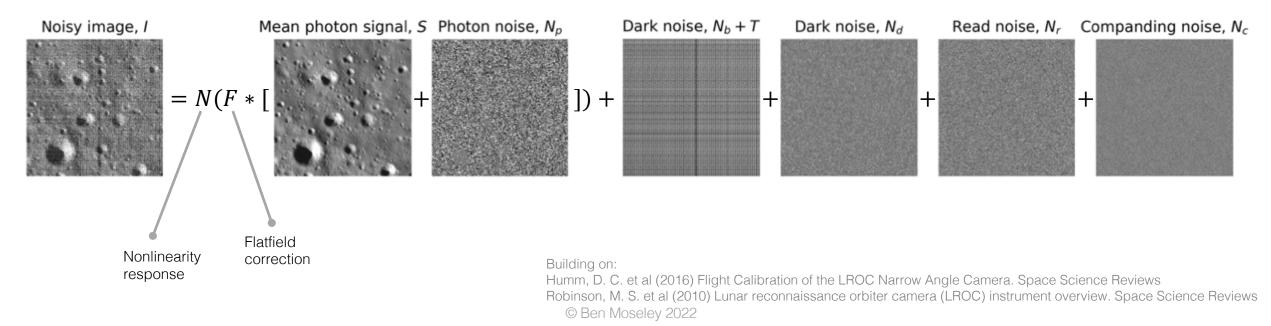


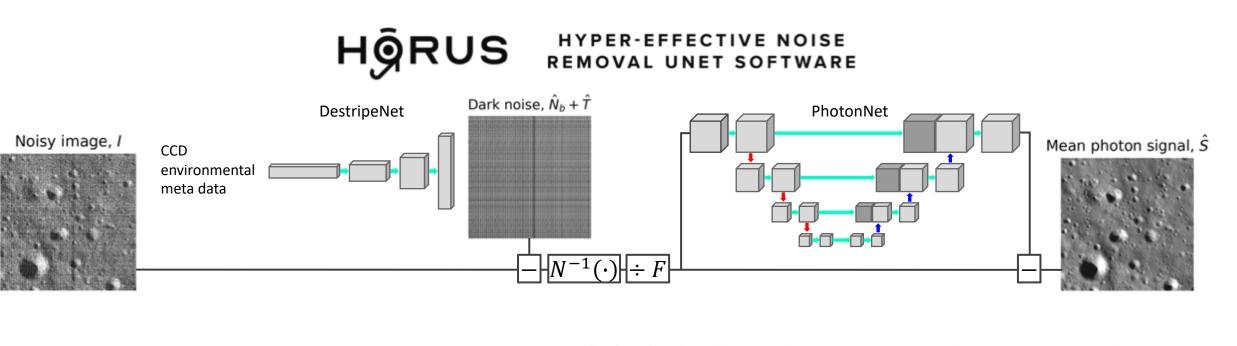
Lunar Reconnaissance Orbiter Camera

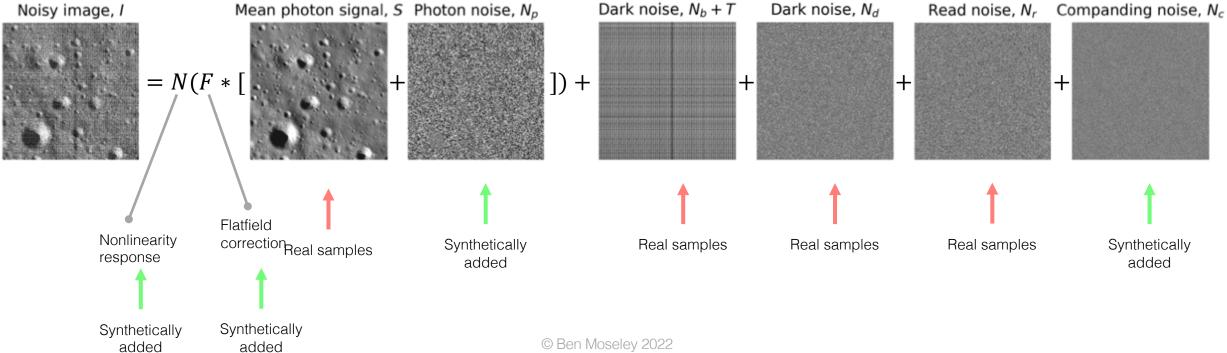


Smartphone

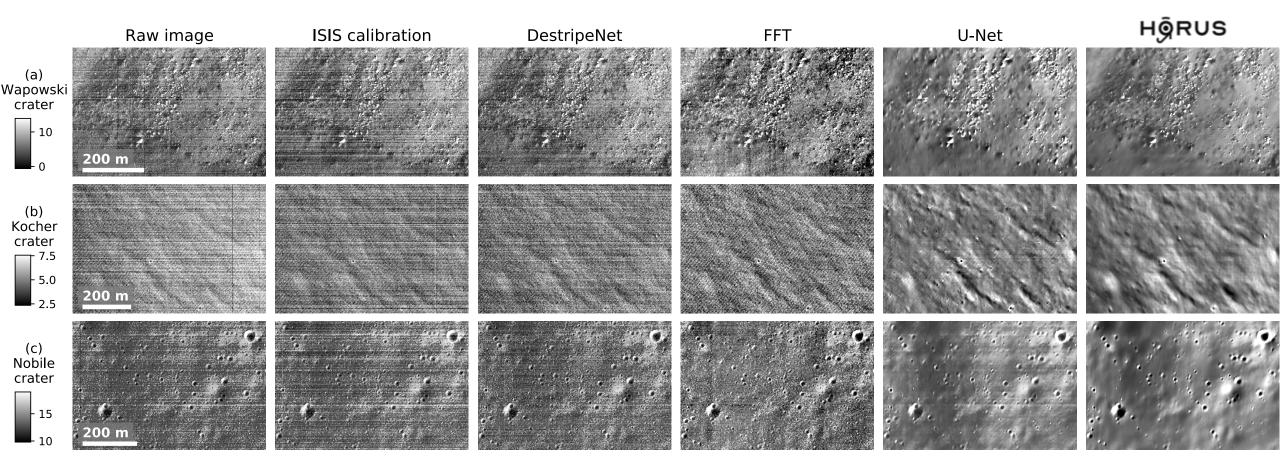
Physical noise model







Comparison to other methods



nature communications

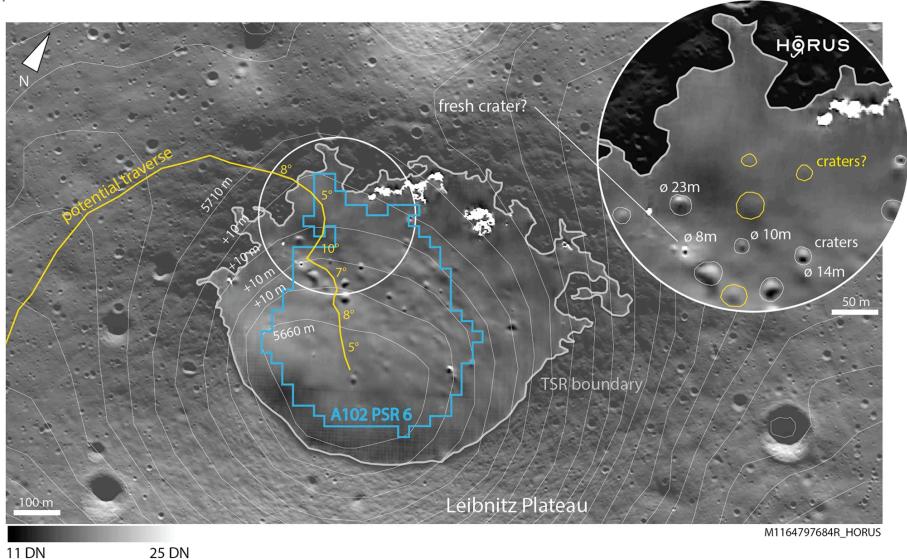
Explore content v About the journal v Publish with us v

nature > nature communications > articles > article

Article | Open Access | Published: 23 September 2021

Peering into lunar permanently shadowed regions with deep learning

25 DN



VIPER Lunar rover Credits: NASA Ames/Daniel Rutter

- SciML is a blossoming field of research
- There are a plethora of different SciML techniques...
- ...which range in the way scientific constraints are added, and their intended scientific task
- Scaling SciML techniques to more complex, multi-scale, multi-physics problems remains an exciting field of research!
- Check out my blog/ GitHub for more!

benmoseley.blog github/benmoseley